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What are the important parameters
that characterize uranium deposits?

= Location

= Shape

= Size and grade

= Depth

= Orientation

= Geotectonics

= Mineralogy

ol ¢ \Y/e[(e][e]s)Y,

= Boundary conditions

Uranium deposits,
like all mineral
deposits, are found
In specific locations
In the world
dictated by geologic
conditions



Major Uranium Minerals

o Autunite—Ca(U0O2)(P0O4)2 10-12(H20)

Carnotite—K2(UO2)2(VO)4 3(H20)
Tyuyamunite—Ca(U0O2)2(V0O4)2 5-8H20
Uraninite—UOQOz2
Uranophane—Ca(U02)2S103(0OH)2 5(H20)



Types of uranium deposits

m Unconformity- Collapse breccia pipe
related deposits - deposlijts i

m Sandstone deposits

\olcanic deposits
= Quartz-pebble - - - .
conglomerate = Surficial deposits
deposits m Metasomatite deposits
= Veln deposits m Metamorphic deposits
= Hematite breccia = Lignite
complex deposits :
(I0CG deposits) = Black shale deposﬂs_
= Other types of deposits

= Intrusive deposits
= Phosphorite deposits

= Todilto limestone
deposits
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Hitzman and Valenta, 2005, Economic Geology, v. 100, pp. 1657-1661



Potential critical minerals in
Grants district uranium deposits

e Vanadium (produced in past from most
deposits)

e Selenium
» Rare earth elements (REE)



Uranium production 1948-2014
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Table 1. Estimated total production of major commodities in New Mexico, in order of estimated cumulative value (data from USGS, 1902-1927;
USBM, 1927-1990; Kelley, 1949; Northrop, 1996; Harrer, 1965; USGS, 1965; Howard, 1967; Harben et al., 2008; Energy Information Administration,
2015; New Mexico Energy, Minerals and Natural Resources Department, 1986-2015). Figures are subject to change as more data are obtained.

Commodity Years of production Estimated quantity of production Estimated cumulative value

Natural Gas 1921-2014 >73 trillion cubic feet $160 billion
Qil 1922-2014 >6.1 billion barrels $115 billion
Coal 1882-2013 >1.27 billion short tons >$21 billion
Copper 1804-2013 >11.5 million tons >$20.6 billion
Potash 1951-2013 112,054,218 short tons >$15 billion

Uranium 1948-2002 >347 million pounds >$4.7 billion

Industrial minerals™* 1959-2013 40,276,083 short tons >$2.6 billion
Aggregates™ 1997-2013 >666 short tons >$2.5 billion
Molybdenum 1951-2013 >176 million pounds >$852 million
Gold 1931-2013 >3.2 million troy ounces >$463 million
Zinc 1848-2013 >1.51 million tons >$337 million
Silver 1903-1991 >118.7 million troy ounces >$279 million
Lead 1848-2013 >367,000 tons >$56.7 million
Iron 1883-1992 >6.7 million long tons >$23 million
Fluorspar 1883-1962 >721,000 tons $12 million
Manganese 1909-1978 >1.9 million tons $5 million
Barite 1883-1963 >37,500 tons >$400,000
Tungsten 1918-1965 113.8 tons (>60% WOs) na
Niobium-tantalum 1940-1958 34,000 pounds of concentrates na

McLemore et al. (2017)




Table 1. Uranium production from 1947-2002 by type of deposit from New Mexico (McLemore and Chenoweth, 1989, 2003; production from
1988-2002 estimated by the authors). Type of deposits refers to Table 2. Total U.S. production from McLemore and Chenoweth (1989) and Energy

Information Administration (2010).

Type of deposit

Period of

Production production

l:|b5 U30g)

(Years)

Production
total in NM
(%)

Primary, redistributed, remnant sandstone uranium deposits (Morrison Formation, Grants district)
Mine water recovery (Morrison Formation, Grants district)

Tabular sandstone uranium deposits (Morrison Formation, Shiprock district)

Other Morrison Formation Sandstone uranium deposits (San Juan Basin)

Other sandstone uranium deposits (San Juan Basin)

Limestone uranium deposits (Todilto Formation?, redominantly Grants district)

Other sedimentary rocks with uranium deposits (total NM)

Vein-type uranium deposits (total NM)

Igneous and metamorphic rocks with uranium deposits (total NM)

330,453,000

9,635,869
493,510
991
503,279
6,671,798
34,889
226,162
69

1951-1988
1963-2002
1948-1982
1955-1959
1952-1970
1950-1985
1952-1970
1953-1966
1954-1956

954
24
0.1
0.1
1.9

Total in New Mexico

348,019,000

1948-2002

Total in United States

927,917,000

1947-2002

NM is 37.5
of total U.S.

'Production rounded to the nearest 1,000 pounds. There has been no uranium production in New Mexico since 2002 Todilto Formation (Cather et al , 2013).

McLemore and Chenoweth (2017)




Grants district

~340 million Ibs of U;O4 have
been produced 1948-2002

~409 million Ibs of U,;O4 hi
resources have been reported by
various companies

Probably another ~200 million
Ibs of U;04 remain to be
discovered

The district contained more than
900 million Ibs U,04




GEOLOGIC SETTING OF THE
GRANTS DISTRICT
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New Mexico

Chaco Canyon

S&S

st Nose Rock

Churchrock | ¢

Crownpoint Ambrosia Lake

I
\‘& [ | o Marquez
D>

Smith Lake’” Lo Barnabe
> | XMontafio
=N

Q N

Laguna”

Morrison Formation (Jurassic) Limestone uranium
sandstone uranium deposits deposits

Othersandstone uranium Other sedimentary

deposits

rocks with uranium




) ARy

Ranchn @
- Ill.- “rE




B

SOUTH

Triassic  Jurassic ) . |
rocks /" rocks Cretaceous rocks Tertiary rocks

XICO
RADOD

NEW ™M

COL

Qjo Alamo o
Sandstone San Jose, Nacimiento,
and Animas Formations

{S:;r::gs i Pictured Cliffs
Sandstane Obey- Dar o Sandstone

Sa-';dslg:l:r‘-e Dakota Port
enti - & sl
Sandstone Mancos Lookout Diclores

Shale Sandstone Formation

Entrada
Sandstone

Chinle Fermation

Crownpoint Paleczoic rocks, undivided
]

Precambrian crystalline rocks

|
|
! Not to scale

FIGURE 3 Diagrammatic southwest-northeast cross section of San
Juan Basin, from Craigg, 2001 (p.12).

o0







v — R Lrevasse Lanyon Formation lré:.
- e e e B e e e e Gallup Sandstone (southwest)

{.’i " " .. " .. l .. l .. "n | vty Gy o = -:tj:- - .
g e e e e akota Sar dstone ﬁf
. Morrison Formaton 1%1
|urassic y Wanakah Formation . I
ap Symbals
Ertrada Sandstone e (i .. | )
- Violcaric vent
200 . ¥
Rock Ponl Formation (scuth) _— Geclogic contact
[riassic [ N -
Chinle Group ) ke
‘___.-'I:: Pl N T P IT IIT , % e '_-c'ILII'.
— - F 5
Cutler Farmation (north) .
! e Caldera
Perrman F San Andres, Gloreta, Yeso, %
and Aba Formations : Rock [ypes
w o it ———
& (south) -2 Sandstone
1|
LA ci
LE EEEEEEE=IEE=E=ET Hermaosa Group (subsurface) -] Shale
= 5 & —
& HH HHHHHHB )
Perinsyhvanian| onaker Trail Paradosx, 't » =] | irmsstorns

Finkarton Trail, and
o Malas Formations {northwest) Walcanic
330 =

lerweer = Leadville and Quray limestones, : *:+:| lgrnenus

570 Paleczaic Aneth and Elpert Formations, )
and lgnacio Quartzite - Coal

a4 .
b Precambran :.T'i_. Middle and Lowser Proterozoie [ Met AN anIc
| 750 netamophic and igneous rocks




Description of the Grants uranium
deposits



Tabular

Less than 2.5 m thick
Grades exceed 0.2% U30s
Sharp boundaries

|_ocally offset by Laramide (Late Cretaceous)-
Tertiary faults

Black to dark gray because of the associated
humate

Also called primary, trend, prefault, black
banded, channel, blanket ore







Redistributed

3-46 m thick

Grades less than 0.2% U30s
Commonly localized by faults
Form roll front geometries locally
Diffuse ore to waste boundaries
Dark, brownish gray to light gray

Also called postfault, stack, secondary, roll
front ore



Redistributed or roll-type uranium
deposits

http://www.wma-minelife.com/uranium/mining/rlfrnt1.html

Open pit mine
In Wyoming,
Power
Resources,
Inc.



Remnant-primary sandstone uranium
deposits

e Surrounded by oxidized sandstone

* Where the sandstone host surrounding the
primary deposits was impermeable and the
oxidizing waters could not dissolve the
deposit, remnant-primary sandstone
uranium deposits remain

* Also called ghost ore bodies



S
@
o
£
@
=
c
o
>
c
®
o
-
@
it
®
2
n
=

Recapture

Member

i

reduced sandstone

oxidized sandstone

- primary uranium ore

redistributed uranium ore
remnant primary ore

shale




0 075 15 3

p——t—t—t—t——t]

= mines
[ mt Taylor Tep
faults
— oxidation boundary
Jmb ore
m Jmw unmined
Jmw mined
projected Jmw ore
Todilto ore
E Jackpile

| Paison Canyon

Miles 5 6 Kilometers | Todiito

Ambrosia
|_ake area



Mt. Taylor area

agpregste it
u

®  mines

[] wt Tayior Tcp

faults

— oxidation boundary

Jmw unmined

Jmw mined

| projected Jmw ore

Todilto ore

Cl Jackpile

i Poison Canyon

0 5 1 2 Miles 0 1 2 4 Kilometers | Todilto
e e | ettt —t——|




HOW DID THE DEPOSITS
FORM?



The primary uranium deposits are
assoclated with humates. Therefore
we need to understand the origin of
the humates as well as the uranium.



Origin of humates

« Organic matter, not petroleum derived

— Plant debris incorporated into the alluvial fans
at the time of deposition

— Plant material associated with the overlying
acustrine units

— Dakota and pre-Dakota swamps
o Locally it is detrital (L-Bar deposits)

o At most places, were deposited just after the
sandstones were emplaced but before the
uranium




There Is no consensus on details of
the origin of the Morrison primary
sandstone uranium deposits

e Alteration of volcanic detritus and shales

within the Morrison Formation (Lacustrine-
humate model)

e Ground water derived from a volcanic
highland to the southwest

 Combination of the above



Possible episodes of uranium
mineralization

 During and soon after deposition of the host
sandstones (I.e. Jurassic)

e During pre-Dakota erosional interval (Late
Jurassic to early Cretaceous)

 During the present erosional cycle (which
started in late Miocene or early Pliocene)



3-12 Ma

redistributed ore 130-140 Ma
Westwater

30-106 M Canyon ore

Cretaceous "
redistributed

ore? \

110-115 Ma

AGE

from McLemore
(2011)

Jackpile —]

<«— 90 OJIpOL BN 651051
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Age Ma
Figure 15. Age determinations of Grants district mineralization
(McLemore, 2011). Includes Pb/U, K/Ar, Rb/Sr, and fission track dates
from Miller and Kulp (1963), Nash and Kerr (1966), Nash (1968), Berglof
(1970, 1989), Brookins et al. (1977), Brookins (1980), Ludwig et al.
(1982), Hooper (1983) and is summarized by Wilks and Chapin (1997).




_acustrine-humate model

e Ground water was expelled by compaction
from lacustrine muds formed by a large playa
lake

 Humate or secondary organic material
precipitated as a result of flocculation into
tabular bodies

* During or after precipitation of the humate
bodies, uranium was precipitated from ground
water



Fluvial facies

Mudflat facies
Playa-lake facies

Detrital
magnetite

and ilmenite AN
Ti oxides v,
(Fe leached)

Diagenetic U
In organic-rich
lenses

Less permeable
2 to 10 km sandstone

from Turner-Peterson and Fishman (1986)




Brine-interface model

Uranium and humate were deposited during
diagenesis by reduction at the interface of
meteoric fresh water and basinal brines

Jranium precipitated in the presence of
numates at a gravitationally stable interface
netween relatively dilute, shallow meteoric
water and saline brines that migrated up dip
from deeper in the basin

Ground-water flow was impeded by upthrown
blocks of Precambrian crust and forced
upwards

These zones of upwelling are closely
assoclated with uranium-vanadium deposits
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Redistributed uranium deposits

o After formation of the primary sandstone
uranium deposits, oxidizing ground waters
migrated through the uranium deposits and
remobilized some of the primary sandstone
uranium deposits

o Uranium was reprecipitated ahead of the
oxidizing waters forming redistributed or roll
front sandstone uranium deposits

* Evidence suggests that more than one
oxidation front occurred In places (Cretaceous
and a Tertiary oxidation front)



_Ground water movement
In permeable sandstone
Secondary roll-
front ore
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Diagenetic U | calcite

ore lenses (not :
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Oxidized rocks
(diagenetic hematite
and limonite)
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MINING

e Open pit

e Underground

e Heap leaching

e |n situ leaching or recovery



Sweetwater mine, Wy

OPEN PIT MINES




Underground Mining


http://www.mining-technology.com/projects/carlin/index.html#carlin3
http://www.mining-technology.com/projects/carlin/index.html#carlin3
http://upload.wikimedia.org/wikipedia/en/a/a2/Adit.jpeg
http://upload.wikimedia.org/wikipedia/en/a/a2/Adit.jpeg
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Methods of uranium processing

Conventional mining and milling
— Higher grade deposits

— Mineralogy and lithology determine if it is acid or
alkaline leach

— No mills in NM, although there are plans
underway for at least 1 mill in the Grants district

In situ recovery

— Typically roll front deposits

— Mineralogy and chemistry important

— Mo and V interferes with recovery of U

Heap leaching



Conventional Uranium Mill
Unit Processes
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Rock Crushing, Sampl
Stockpiling

COARSE ORE STORAGE

CRUSHING

Trucks are weighed
Ore Is sampled

Ore IS crushed to < V¥, size
In series of crushers

Crushed ore Is stockpiled

ng,

FINE ORE STORAGE



Grinding
* Rod Mills

SUDCT - Ball wils

e Semi-Autogenous Grinding
(SAG) Mills

o Water Is added to make pulp

o Grinders in
Operating Mill

o Ball Mill in
foreground

e SAG Mills In ¥ [
background S, i e i}i% q; |

et MNEFT T }
R e L 8




eaching Process

o Acid Leaching System
o Sulfuric Acid Leach

el ° Acid, Heat and Oxidant
(sodium chlorate) applied

LEACHING

 50% solids/ 50%
water 1s mixed w/
Acid to ~22% solids

e Uranium is “leached”
Into solution




Classifiers/Settling Tanks

e Solids are washed of the Uranium

e Solids advance to thickeners to
separate “tailings”

e < 1% of Soluble Uranium remains in
tailings

e 99% of Uranium is now In the
“pregnant” liquor




Solvent Extraction

e Dissolved Uranium is
chemically extracted from
“pregnant” liguor

e Selective removal of
Uranium from solution

e Uranium is concentrated 4x

Mixer-Settler mixes Ur-acid
solution w/ kerosene

U transferred to Solvent phase

Raffinate — barren aqueous
solution, free of Uranium

Stripping concentrates U 40x

SOLVENT EXTRACTION




Prec:|p|tat|on and Drying

U “falls out” of
solution

o Settles to bottom of ) PRODUCT
Precipitation Tanks

URANIUM PRECIPITATION

DRYING & PACKAGING
e Uisnow asolid

o Dewatering via
Centrifuge or Filter
Press

Final Drying step

produces Yellow

Cake

Drying Temp ~1200

degrees F




Tailings Ponds

« Solids and liguid wastes are
disposed in lined ponds

 Water Is recycled

—— « Solids allowed to dry

_

Dried solid “tails” are Capped w/
~13’ of clay, rock and topsoil

Capped pond Is re-vegetated
Extensive environmental monitoring

Heavily regulated, financially bonded _

- ensures protection of environment




Mill Process Summary

LIQUID

SOLID LEACHING GRINDING
SEPARATION




A Conventional Mill

White Mesa
Uranium Mill,
Blanding Utah
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Past ISR in New Mexico

Mobil at Crownpoint

UNC-Teton at Section 23

Grace Nuclear at Hook’s Ranch

Section 13 north of Seboyeta and Church Rock

Anaconda at Windwhip, part of the Jackpile
Paguate mine)

Mine water recovery from Ambrosia Lake and
other mines
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In situ Recovery

Scheme of normal IST. operation
potable water clant
racon
|:- [ |.- I:I evaporation
i) y ~pond

"

lzaching
solution confined deep aquifer

http://www.wise-uranium.org/uisl.html
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Uranium Potential in New
Mexico
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Historical Production from the
Morrison Formation

» 340 million Ibs of U,O4 from 1948-
2001

« Accounting for 97% of the total
uranium production in New Mexico

e More than 30% of the total uranium
production in the United States

o 7t largest district in total uranium
production in the world



New MexIco IS
2"d in uranium reserves 15
million tons ore at 0.277% U308
(84 million Ibs U308) at $30/Ib



U.S. Forward-Cost Uranium Reserves by State, December 31, 2003

State(s)

Ore Grade? U,0, Ore Grade? U,0O,

(million tons) | (Percent U;0g) | (million pounds) | (million tons) | (Percent U;0g) | (million pounds)

Arzona, Colorado, Utah | 8]  ozs1] 4] 45 0.138

http://www.ela.doe.gov/cneaf/nuclear/page/reserves/ures.ntmi



Why did uranium production
cease In New Mexico?

Three Mile Island produced a public perception in the
U.S. that nuclear power was dangerous.

At the same time, NM uranium deposits in production
were decreasing in grade by nearly half.

Significant changes were beginning to occur that
would increase the cost of mine and mill reclamation
as well as future permitting in the U.S.

More attractive, larger, higher grade uranium deposits
In Canada and Australia were discovered.

Large coal deposits were found throughout the U.S.
that could meet the nation’s energy needs.



There 1s sufficient uranium reserves to meet the
current reactor demand.

In order for NM deposits to once again be economic—
Must build new reactors to increase demand.

Wait for reserves at other localities to be depleted
by production.

Decrease cost of production/increase price.

Mine closure plans must be approved before mining
can begin.



Importance of sandstone uranium
deposits Iin the Grants district

* Major mining companies abandoned the
districts after the last cycle leaving advanced
uranium projects.

 [nexpensive property acquisition costs

includes $$ millions of exploration and

development expenditures.

 Availability of data and technical expertise.

e Recent advances In In situ leaching makes
sandstone uranium deposits attractive
economically.




comments

None of the urantium mills remain In the
Grants region.

Current plans by some companies are to
mine uranium by In Situ recovery.

Any conventional mining of uranium will
require shipping to an existing mill in Utah
or licensing and building a new mill in New
Mexico.

The Navajo Nation has declared that no
uranium production will occur In Indian
Country.



Reasonable economic
potential for development



Map  Satellite

NUCLEAR POWER PLANTS

https://www.theguardian.com/environment/interactive/2012/mar/08/nuclear-power-plants-world-map



U.S. Operating Commercial Nuclear Power Reactors
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2015 Annual Reactor-Related Uranium Requirements (Low)
[t U] (OECD 2016)
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Uranium Production in The United States

USA Cum. Production = 353,877 Tonnes U

USA Cum. Reactor-Related Demand = 404,500 Tahnes U

- Grants Uranium Region Cum. Production = 133,590 Tonnes U

Tonnes U/ GWe Capacity =178.5

B USA Production
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e JS A Demand

Pelizza and McCarn (2002)




Production to 2017
Canada 524,437 tU
USA 376,396 tU

Kazakhstan 316,473 tU

Cumulative Uranium Production to 2017
[t U] Total to 2017 (OECD 2016, WNA 2016, WNA 2017, WNA 2018)

World Total = 3000811 t

http://www.wise-
. uranium.org/umaps.
{ic) WISE Uranium Proje — — — htm I




Uranium Resources (RAR - $40/kg U)

[t U] Reasonably Assured Resources (recoverable), 1/1/2015, Cost range < US$40/kg U (OECD 2016)

World Total = 478300 t
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Uranium Resources (RAR - $260/kg U)

[t U] Reasonably Assured Resources (recoverable), 1/1/2015, Cost range < US%260/kg U (OECD 20186)
World Total = 4386400 t
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Total World Electricity Consumption, by Region
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History of Uranium Spot Prices 1972 to 2018: Inflation Adjusted (Real) and Actual

Source: The Ux Consulting Company
WWW.LIXC.COMm
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Some analysts suggest uranium prices could exceed $40/Ib U30Os by
2020




Uranium Price History

Events & Macroeconomic Factors (1968 — 2016)

L 1P Cranbem Prioe Hins Uranium Price History
(1968 - 2016)
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Future of Nuclear Power

Renewable energy Is becoming more important
throughout the world and 1s competitive with
nuclear energy, because of the subsidies

But must have a sustainable baseload that does
not create CO2 emissions=nuclear

Small nuclear reactors could be a game changer
Thorium reactors could be a game changer

Assumption that U.S. Navy will continue to
operate nuclear power

Plenty of uranium resources in world



Future of uranium mining In
Grants district

Higher cost reserves than elsewhere in world

Most Grants deposits must be mined by
conventional methods, not In situ recovery,
unless the technology changes=requires a mill

Heap leaching is a possibility, if it could be
permitted

A lot of public opposition to mining in the
Grants district



Summary

o Sandstone uranium deposits have played a
major role In historical uranium production

« Although other types of uranium deposits are
higher in grade and larger in tonnage,
sandstone uranium deposits will in the future
become a significant player

— As In-situ leaching technologies improve cutting
production costs

— As demand for uranium increases world-wide
Increasing the price of uranium

— Probably in the long-term >10 yrs in NM



FUTURE WORK

Refine our estimates of uranium resources/reserves
potential in the state

Continue detailed mineralogy studies (XRD and electron
microprobe)

Define the origin of distribution of primary verses
redistributed deposits in the San Juan Basin

Geochemical characteristics of naturally-occurring
groundwater that oxidized, remobilized, and redeposited
primary tabular uranium deposits in the Grants district

Study of clay species in the mineralized zones, and their
Impacts on porosity and permeability characteristics during
uranium extraction and mobility
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