RARE EARTH ELEMENTS (REE) DEPOSITS IN NEW MEXICO

Virginia T. McLemore, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 ginger@gis.nmt.edu
Every American Born Will Need...

2.9 million pounds of minerals, metals, and fuels in their lifetime

Learn more at www.mii.org
OUTLINE

- Introduction
- Methods
- Mining and Exploration of REE in New Mexico
- Types of REE Deposits in New Mexico
- Potential For New Mexico REE Deposits
- Challenges
- Conclusions
Elements in Computer Chips
(National Research Council, 2007)

- **elements needed in 1980s**
- **additional elements needed today**

<table>
<thead>
<tr>
<th>Periodic Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>Li</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Rb</td>
</tr>
<tr>
<td>Cs</td>
</tr>
<tr>
<td>Fr</td>
</tr>
<tr>
<td>Th</td>
</tr>
</tbody>
</table>
• REE ores contain all rare earth elements except Pm
• There is no shortage of REE ores
 Most rare earths are not rare
• Most ores are rich in Ce, La, Nd and Pr
• The rare earths are chemically very similar
• Producers try to balance supply and demand
 And are rarely successful!
Applications For Rare Earth Elements

Catalysts
- Petroleum refining
- Chemical processing
- Catalytic converter
- Diesel additives
- Industrial pollution scrubber

Electronics
- Display phosphors (CRT, PDP, LCD)
- Medical imaging phosphors
- Lasers
- Fiber Optics
- Optical temperature sensors

Glass
- Polishing compounds
- Optical glass
- UV resistant glass
- Thermal control mirrors
- Colorizers/Decolorizers

Other
- Water Treatment
- Fluorescent lighting
- Pigments
- Fertilizer
- Medical Tracers
- Coatings

Magnets
- Motors
- Disc drives & disk drive motors
- Power generation
- Actuators
- Microphones & speakers
- MRI

Ceramics
- Capacitors
- Sensors
- Colorants
- Scintillators

Metal Alloys
- Hydrogen storage (NiMH batteries, Fuel cells)
- Steel
- Lighter flints
- Aluminum/Magnesium
- Cast iron
- Superalloys
RARE EARTH ELEMENTS—USES

- permanent magnets, 16%
- automotive catalytic converters, 22%
- glass polishing and ceramics, 39%
- petroleum refining catalysts, 12%
- metallurgical additives and alloys, 9%
- rare-earth phosphors for lighting, televisions, computer monitors, radar, and x-ray-intensifying film, 1%
- miscellaneous, 1%
 - NiMH batteries
 - flints for lighters
Toyota Prius
2.2 lbs Nd in magnets
22-33 lbs La in batteries

HTTP://WWW.MOLYCORP.COM/HYBRID_EV.ASP
Prices are for pure oxides from a leading rare earth elements chemical producer in 2009. Pm (prometheum) is not shown because it does not occur in nature and is not commercially available.

REO: rare earth oxide.
USD/kg: United States Dollars per kilogram.
RARE EARTH ELEMENTS—IMPORT SOURCES

- Bastnaesite (Ce, La, Y)CO3F
 - China, California
- Monazite (Ce, La, Th, Nd, Y)PO4
 - Australia, 67%
 - France, 33%
- Rare-earth metals, compounds, etc.
 - China, 74%
 - France, 21%
 - Japan, 3%
 - United Kingdom, 1%
Figure 1 Map showing the global distribution of REE deposits.
Mountain Pass, CA
Photo from Molycorp, Inc.

Bayan Obo mine, near Baotou, China
Photo from Google Earth
Bastnäsite-(Ce), on dolomite, (x 14)

(Ce,La)(CO₃)F

HTTP://UN2SG1.UNIGE.CH/ATHENA/...

MONAZITE

HTTP://MINERAL.GALLERIES.COM/M...
• Bastnaesite
 CeFCO3
• Apatite > 5400 ppm total REE
 Ca5(PO4)3(OH,F,Cl)
• Monazite 500,000 ppm total REE
 (REE,Th)PO4
• Manganese nodules 99,000 ppm total REE
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>1,190,000</td>
<td>15,800,000</td>
<td>1,660,000</td>
<td>$2.3/lb</td>
<td>540,000,000</td>
</tr>
<tr>
<td>Au</td>
<td>210</td>
<td>2,350</td>
<td>170</td>
<td>$950/oz</td>
<td>47,000</td>
</tr>
<tr>
<td>REO</td>
<td>0</td>
<td>124,000</td>
<td>7,410</td>
<td>varies</td>
<td>99,000,000</td>
</tr>
<tr>
<td>Be</td>
<td>120</td>
<td>140</td>
<td>140</td>
<td>$120/lb</td>
<td>15,900+</td>
</tr>
<tr>
<td>Sb</td>
<td>0</td>
<td>187,000</td>
<td>22,400</td>
<td>$2.3/lb</td>
<td>2,100,000</td>
</tr>
<tr>
<td>As</td>
<td>385</td>
<td>52,500</td>
<td>3,600</td>
<td>$0.92/lb</td>
<td>1,070,000</td>
</tr>
<tr>
<td>Bi</td>
<td>100</td>
<td>7,300</td>
<td>1,020</td>
<td>$7.4/lb</td>
<td>320,000</td>
</tr>
<tr>
<td>Ga</td>
<td>0</td>
<td>78</td>
<td>20</td>
<td>$480/kg</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Ge</td>
<td>5</td>
<td>14</td>
<td>5</td>
<td>$950/kg</td>
<td>450+</td>
</tr>
<tr>
<td>Te</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>$145/kg</td>
<td>22,000</td>
</tr>
<tr>
<td>cement</td>
<td>71,800,000</td>
<td>2,800,000,000</td>
<td>73,800,000</td>
<td>$100/mton</td>
<td></td>
</tr>
</tbody>
</table>
MOUNTAIN PASS CARBONATITE, CALIFORNIA

- 1.3 Mt in reserves with a grade of 7.98%
 + Bastnaesite (light REEs)
METHODS OF STUDY
METHODS

- Published and unpublished data were inventoried and compiled on existing mines and prospects within NM.
- Evaluated the NURE data.
- Entered data into GIS.
- Field examination.
- Mineralogy and chemical studies.
MINING AND EXPLORATION HISTORY OFREE IN NEW MEXICO
Mining districts and areas in New Mexico that contain REE deposits.
<table>
<thead>
<tr>
<th>DISTRICT NAME</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallinas Mountains</td>
<td>146,000 lbs of bastnasite concentrate</td>
</tr>
<tr>
<td>Petaca</td>
<td>112 lbs of samarskite, few hundred lbs of monazite, 12,000 lbs of Ta-Nb-REE ore</td>
</tr>
<tr>
<td>Elk Mountain</td>
<td>500 lbs of Ta-U-REE concentrate</td>
</tr>
<tr>
<td>Rociada</td>
<td>Several thousand tons of REE-Ta ore</td>
</tr>
<tr>
<td>Tecolote</td>
<td>$10,000 worth of beryl, tantalite-columbite and monazite</td>
</tr>
<tr>
<td>Gold Hill</td>
<td>REE production in the 1950s</td>
</tr>
</tbody>
</table>

Production of rare earth elements (REE) in New Mexico, to date.
TYPES OF RARE EARTH ELEMENT DEPOSITS IN NM
TYPES OF REE DEPOSITS IN NM

- Alkaline Igneous Rocks
- Carbonatites
- REE-Th-U Hydrothermal Veins
- Pegmatites
- Placer
- Other REE-Bearing Deposits
ALKALINE IGNEOUS ROCKS

- Igneous rocks with $\text{Na}_2\text{O}+\text{K}_2\text{O}>0.3718(\text{SiO}_2)-14.5$
- Igneous rocks with mol $\text{Na}_2\text{O}+$ mol $\text{K}_2\text{O}>$ mol Al_2O_3

Gallinas Mountains

Capitan pluton

- granophyre zone
- aplite zone
- porphyritic zone
In 1990, Molycorp, Inc. reported historic resources of 2.7 million short tons grading 0.18% Y_2O_3 and 1.2% ZrO_2 as disseminated eudialyte.
PROTEROZOIC TO CAMBRIAN-ORDOVICIAN SYENITES, ALKALI GRANITES, EPISYENITES
Episyenites in Longbottom Canyon, Caballo Mountains
carbonate-rich rocks containing more than 50% magmatic carbonate minerals, less than 20% SiO$_2$, are of apparent magmatic derivation
Chupadera carbonatites (van Allen et al., 1986)

Lemitar carbonatites (McLemore, 1983)
Lemitar carbonatite
REE-TH-U HYDROTHERMAL VEINS

- various Th and REE minerals found in hydrothermal veins and are commonly associated with alkaline igneous rocks and carbonatites
- tabular bodies, narrow lenses, and breccia zones along faults, fractures and shear zones
North American Cordilleran Belt of Alkaline Igneous Rocks
land surface

Carbonatite stock

Fenite

Alkaline intrusion

/ REE-Th-U veins

/ Carbonatite dikes
GALLINAS MOUNTAINS, LINCOLN COUNTY
Mines and prospects in the Gallinas Mountains, Lincoln County
REE-F veins (131 samples)

Cu-REE-F veins (65 samples)

Breccia pipe deposits (58 samples)

Iron skarns (6 samples)
PEGMATITES

course-grained igneous rocks, lenses, or veins with granitic composition, contains essential quartz and feldspar, and represent the last and most hydrous phase of crystallizing magmas.
PETACA

PEGMATITES

BURRO MOUNTAINS
PLACERS

- accumulations of heavy, resistant minerals (i.e. high specific gravity) that form on upper regions of beaches or in long-shore bars in a marginal-marine environment
- In NM these are Cretaceous in age
Heavy Mineral Sand Deposits
Small quantities of monazite-(Ce) are sometimes recovered as a by-product
Sanostee deposit, San Juan County
DEPOSITS FORM ALONG BEACHES

- SWAMP
- DUNES
- BACK BEACH
- UPPER FORESHORE
- LOWER FORESHORE
- MARINE BASIN

- high-grade black sand concentrations
- low-grade black sand concentrations

water
REE CHEMISTRY
OTHER REE-BEARING DEPOSITS

- Uranium, thorium, and phosphate deposits and REE could be recovered as a by-product.
 - Examine sandstone U deposits for REE contents
- Other placer deposits (fluvial, alluvial placers) could carry anomalous amounts of REE.
- Fluorite veins can carry high concentrations of REE, especially Y.
POTENTIAL FOR NEW MEXICO REE DEPOSITS

- Pajarito Mountain
- Carbonatites
- REE-Th-U hydrothermal vein and breccia deposits
 - Gallinas Mountains
 - Episyenites in Caballo, Burro Mts, Lobo Hill
CHALLENGES
The main challenge is to provide society with its needs, protect future resources, limit alteration of the landscape, and affect local communities as little as possible (i.e., sustainable development).
KEY ISSUES FOR REE

- Finite resources
- Chinese market dominance
- Long lead times for mine development
- Resource nationalism/country risk
- High project development cost
- Relentless demand for high tech consumer products
- Ongoing material use research
- Low substitutability
- Environmental issues
- Low recycling rates
- Lack of intellectual knowledge and operational expertise in the west
Mineral Processing

Separating Rare Earth Minerals

Requires two steps: (1) separate REE minerals from other minerals; (2) separate individual REE.

Separating Individual REE

Solvent extraction uses small differences in solubility between individual REE. REE minerals are leached with an acid or base, then mixed with an organic chemical that strips a selected REE.

Froth flotation is the most common method for separation of rare earth minerals from other minerals in ore.
How much REE do we need?
Are there enough REE in the pipeline to meet the demand for these technologies and other uses?
Can REE be recycled?
Are there substitutions that can be used?
What are the reclamation challenges?

REE are nearly always associated with U and Th and the wastes from mining REE will have to accommodate radioactivity and radon.
CONCLUSIONS

- REE are important for green technologies as well as our entire lifestyle and new uses will be found because of their unique properties.
- REE are found in specific locations based on favorable geology and there is sufficient supply for the near future.
- Some of the REE required for these green technologies are found in New Mexico.
- Need for understanding the mineralogy and distribution of these minerals in known ore deposits.
THANK YOU!

QUESTIONS?