ME571/GEO571 Geology of Industrial Minerals Spring 2018

Commodities, Part 5
strontium, sodium sulfate, trona
(soda ash), talc, lithium, summary
comments

Safety

Reminders

- Commodity presentations—send me your powerpoints
- April 28 AIPG meeting and Field trip in afternoon (perlite mine or carbonatites)
- Research Projects presentation April
 30
- Finals, written Project due May 4
- No class May 7

Strontium

Strontium—introduction

- Sr
- 15th abundant element
- does not occur naturally as an element, in compounds
- No production in the United States since 1959
- celestite or celestine SrSO4 (same structure as barite) 56.4% Sr
- strontianite SrCO₃, 70.1% Sr

Celesitite

http://www.zeuter.com/~tburden

Strontianite

http://www.zeuter.com/~tburden

Strontium and strontianite are named after Stronian, a village in Scotland near which the mineral was discovered in 1790 by Adair Crawford and William Cruickshank

A critical mineral

Strontium—uses

- faceplate glass of color television picture tubes, 77%
- ferrite ceramic magnets, 8%
- pyrotechnics and signals, 9%
 - fireworks (red flame)
 - flares
- other applications, 6%
 - refining zinc
 - optical materials

Strontium—production

Salient Statistics—United States:	2013	2014	2015	2016	2017°
Production	_	-		_	
Imports for consumption:					
Celestite ¹	21,900	24,200	24,500	4,420	10,800
Strontium compounds ²	7,190	7,600	7,100	6,420	6,390
Exports, strontium compounds	37	104	86	91	49
Consumption, apparent:					
Celestite	21,900	24,200	24,500	4,420	10,800
Strontium compounds	7,160	7,500	7,020	6,330	6,340
Total	29,000	31,700	31,500	10,800	17,200
Price, average value of celestite imports					
at port of exportation, dollars per ton	50	50	51	78	73
Net import reliance ³ as a percentage of					
apparent consumption	100	100	100	100	100
Recycling: None.					

Salient Statistics—United States:	2013	2014	<u>2015</u>	2016	2017°
Production	_				
Imports for consumption:					
Celestite ¹	21,900	24,200	24,500	4,420	10,800
Strontium compounds ²	7,190	7,600	7,100	6,420	6,390
Exports, strontium compounds	37	104	86	91	49
Consumption, apparent:					
Celestite	21,900	24,200	24,500	4,420	10,800
Strontium compounds	7,160	7,500	7,020	6,330	6,340
Total	29,000	31,700	31,500	10,800	17,200
Price, average value of celestite imports	-	-	-	-	-
at port of exportation, dollars per ton	50	50	51	78	73
Net import reliance ³ as a percentage of					
apparent consumption	100	100	100	100	100

Recycling: None.

Strontium—geology

- association with rocks deposited by the evaporation of sea water (evaporites)
- igneous rocks
- Brines

 Barite and calcite must be removed costly

Sodium sulfate

Sodium sulfate—introduction

- disodium sulfate (Na₂SO₄),
- inorganic chemical
- Thenardite Na₂SO₄
- Hanksite Na₂2K(SO₄)₉(CO₃)2CI
- Glauberite Na₂Ca(SO₄)₂

Sodium sulfate—uses

- soap and detergents, 46%
- textiles, 12%
- pulp and paper, 13%
- glass, 11%
- carpet fresheners, 7%
- miscellaneous, 11%

Sodium sulfate—reserves

- Botswana
- China
- Egypt
- Italy
- Mongolia
- Romania
- South Africa

Sodium sulfate—geology

- brines or crystalline evaporite deposits
- 10 ft thick deposit 1400 ft below the surface near Green River, Wyoming
- Searles and Owens Lakes in California
 - –450 million tons of sodium sulfate resource
- Great Salt Lake, Utah
 - -400 million tons of resource

Sodium sulfate—byproduct

 byproduct from the production of ascorbic acid, boric acid, cellulose, chromium chemicals, lithium carbonate, rayon, resorcinol, and silica pigments

Glauberite

http://mineral.galleries.com/m...

Searles Lake

http://www.bovagems.com/eclectic/HTML/19971001_1097BOVA2.html

Soda ash (Trona, Baking Soda)

Soda ash—introduction

- sodium carbonate (Na2CO3)
- Trona (Na2CO3•NaHCO3•2H2O)
- nahcolite (NaHCO₃)
- Gaylussite Na₂Ca(CO₃)₂ 5H₂O
- mixture of various salts and other trace impurities (including sand, clay and metals such as potassium, silicon, magnesium, calcium, iron, aluminum and titanium)
- Nonflammable
- white, yellow, brown or gray
- no notable odor
- Decomposes beginning at 70oC

Trona

http://mineral.galleries.com/minerals/carbonat/trona/trona.jpg

Trona

http://www.trainweb.org/wyomingrails/wymining/trona.html

Gaylussite

http://mineral.galleries.com/minerals/carbonat/gaylussi/gaylussi.jpg

- baking soda is produced from soda ash, or sodium carbonate
- Also sodium bicarbonate, bicarbonate of soda, bicarb and sodium bicarb
- used
 - leavening agent for baked products
 - fire retardant
 - cleansing agent
 - degreaser
 - medicine
 - removes moisture and has deodorizing properties

Ancient uses

- Egyptians used it to make glass ornaments and vessels
- Romans also used soda ash for baking bread, making glass and for medicinal purposes
- extraction from the ashes of various plants continued until the middle of the 19th century and gave it the present-day name of "soda ash"

Soda ash—uses

- glass, 50%
- chemicals, 27%
- soap and detergents, 11%
- distributors, 6%
- flue gas
 desulfurization and
 pulp and paper, 2%
 each

- water treatment, 1%
- other, 1%
 - baking soda

Soda ash—production

Salient Statistics—United States:	2013	2014	2015	2016	2017€
Production ²	11,500	11,700	11,600	11,800	11,800
Imports for consumption	13	39	40	35	24
Exports	6,460	6,670	6,400	6,780	6,870
Consumption:					
Apparent ³	5,000	5,100	5,200	5,010	4,950
Reported	5,120	5,170	4,990	5,120	4,900
Price:					
Average sales value (natural source):					
f.o.b. mine or plant, dollars per metric ton	145.18	148.67	155.30	149.83	152.00
f.o.b. mine or plant, dollars per short ton	131.71	134.87	140.88	135.92	138.00
Stocks, producer, yearend	348	271	285	336	296
Employment, mine and plant, number ^e	2,500	2,500	2,500	2,500	2,500
Net import reliance4 as a percentage					
of apparent consumption	E	E	E	E	E

Recycling: No soda ash was recycled by producers; however, glass container producers are using cullet glass, thereby reducing soda ash consumption.

World Production and Reserves: Reserves for Turkey were revised based on new Government information.

	Mine production		Reserves ^{5, 6}	
Natural:	2016	2017°		
United States	11,800	11,800	⁷ 23,000,000	
Botswana	250	250	400,000	
Kenya	450	450	7,000	
Turkey	1,900	2,100	840,000	
Other countries		<u>15,000</u>	280,000	
World total, natural (rounded)	14,400	15,000	25,000,000	
World total, synthetic (rounded)	39,200	39,000	XX	
World total (rounded)	53,600	54,000	XX	

Soda ash—geology

- Bedded lacustrine deposits
- bedded trona and disseminated shortite and locally abundant halite in the Wilkins Peak Member of the Green River Formation
 - 82 billion short tons of trona
 - 53 billion tons of mixed trona and halite
- nahcolite is found in the Parachute Creek Member of the Green River Formation
 - 32 billion short tons

Wyoming

- 50-60 million years ago during the Eocene Age in the Wilkins Peak Member of the Green River Formation
- freshwater lake, Lake Gosiute, covered an estimated 15,000 square miles
- minerals and mud settled in the bottom of the lake and sodium, alkaline and bicarbonate, were transported to the lake by runoff water
- Green River formation with 42 beds that cover about 1,300 square miles

Trona is mined underground, using heavy equipment like the Continuous Miner pictured above. The ore is then carried to the surface and

https://www.wyomingmining.org/minerals/trona/

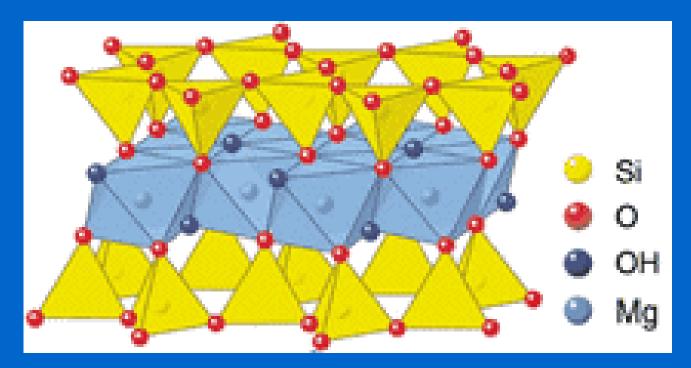
Processing

- 3 grades—light, medium and dense
- differ in physical characteristics, such as bulk density and particle size and shape

Environmental issues

- volatile organic compounds and hazardous air pollutants
- nitrogen oxides
- methane

Talc

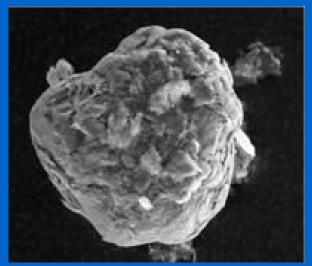

Introduction

Talc is an important industrial mineral, it is a vital part of everyday life. It can be found in:

- the magazines;
- the polymers in our cars and hor
- the paints
- the tiles we walk on
- ✓ Talc has high heat and chemical resistance, good electrical insulating properties, and improves stiffness and tensile strength, making it useful for use in the plastics and rubber industries.
- ✓ Low electrical conductivity and acids make it an ideal surface for lab counter tops and electrical switchboards.
- It is also an important filler material for paints, rubber and insecticides. It is most known as the primary ingredient in talcum powder.

Mineralogy

Talc is a hydrated magnesium sheet silicate, Mg₃Si₄O₁₀ (OH)₂. Its elementary sheet is composed of a layer of magnesium-oxygen/hydroxyl octahedra, sandwiched between two layers of silicon-oxygen tetrahedra.



MORPHOLOGY

The size of an individual talc platelet can vary from approximately 1 micron to over 100 microns depending on the deposit. It is this individual platelet size that determines a talc's lamellarity. The elementary sheets are stacked on top of one another, like flaky pastry, and, because the binding forces linking one elementary sheet to its neighbors are very weak, the platelets slide apart at the slightest touch, giving talc its characteristic softness.

Macro-crystalline talc

Micro-crystalline talc

- Mineral specimens are not very common as it does not form very large crystals
- ➤ It often replaces other minerals on an atom by atom basis and forms what are called **pseudomorphs** (false shape).

The talc takes the form of the mineral it replaces. A specimen of what looks like milky quartz is quite a surprise when it not only has a soapy feel but can be scratched by a fingernail.

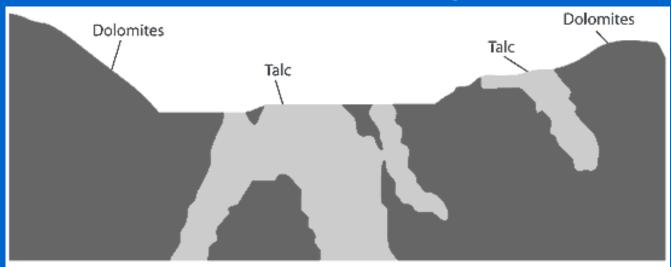
Geology

Talc is one of the common minerals in metamorphic rock. Although talc deposits can be found throughout the world in various geological contexts.

Economically viable concentrations of talc are not that common.

Best field indicators are softness, color, soapy feel, luster and cleavage.

Talc deposits result from the transformation of existing rocks under the effect of hydrothermal fluids carrying one or several of the components needed to form the mineral (MgO, SiO₂, CO₂).


The size and shape of talc deposits depend upon:

- the intensity of the hydrothermal activity
- Pressure and deformations

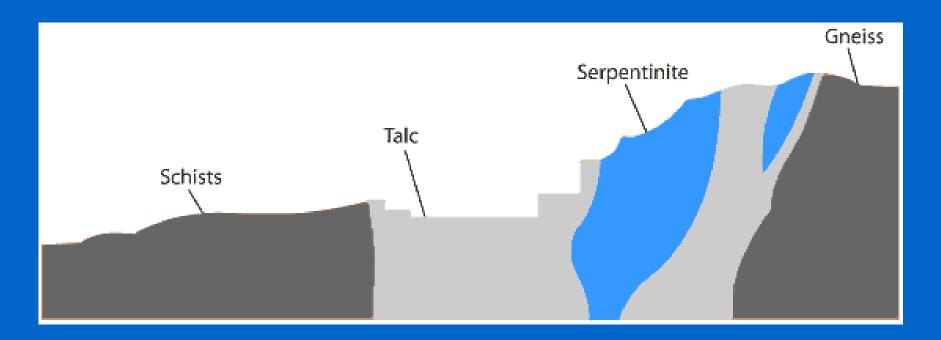
Types of talc deposit

Magnesium carbonate derivative orebodies

The talc results from the transformation of carbonates (dolomite and magnesite) in the presence of silica. Deposits of this kind represent some 60% of world production and provide some of the whitest and purest talc ores. The Yellowstone (Montana, USA) and Respina (North-West Spain) talc deposits are good examples.

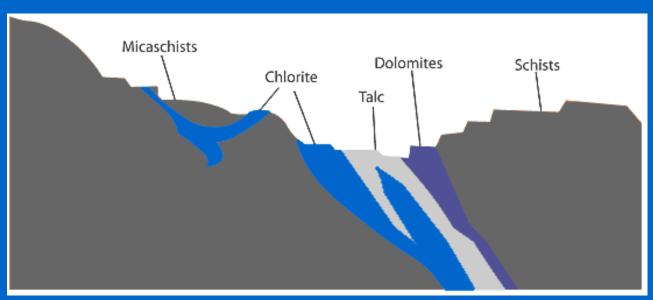
Yellowstone mine in Montana - US

Types of talc deposit


Serpentinite derivative orebodies

About 20% of present world production comes from the transformation of serpentinite into a mixture of talc and reactional magnesium carbonates. This ore, commonly called "soapstone", is always grey and never pure. To be used as an industrial mineral, it is often upgraded by flotation to increase the talc content and whiteness.

This type of deposit is relatively common and widely distributed along ultra-mafic rock belts. In Vermont (USA), Quebec and Ontario (Canada) and Finland are deposits currently being worked.


Argonaut mine in Vermont - US

Types of talc deposit

Siliceous or silico-aluminous rock derivative orebodies

Results from the transformation of siliceous rocks. Magnesium is brought by the migration of hydro-thermal fluids.

If the parent rock has a silico-aluminous composition, e.g. pelitic schist or gneiss, and under the same conditions of formation, chlorite can be formed in addition to the talc, the resulting ore being a mixture of both talc and chlorite. This type of deposit can be found in association with the magnesium-carbonate derivative type, this kind of deposit represents about 10% of world production.

Trimouns mine, French Pyrenees

PHYSICAL CHARACTERISTICS

- Color is green, gray and white to almost silver.
- Luster is dull to pearly or greasy.
- Transparency crystals are translucent and masses are opaque.
- Crystal System is monoclinic.
- Crystal Habits: flattened tabular crystals with a hexagonal cross-section, usually talc is found in compact or lamellar masses. Forms pseudomorphs (false shape) of other crystals such as quartz, pyroxenes, olivines and amphiboles.
- Cleavage is perfect in one direction, basal.
- Fracture is uneven to lamellar.
- Hardness is 1
- Specific Gravity is 2.7 2.8 (average)
- Streak is white.
- Associated Minerals include serpentine, dolomite, magnesite, quartz, pyroxenes, olivine, biotite and amphiboles.

USES

- > Agriculture and Food

- > Ceramics
- **≻**Coatings
- **≻**Paper
- > Personal Care

- > Rubber
- > Wastewater treatment

Substitutes

The major substitutes for talc are:

- clays and pyrophyllite in ceramics
 - * kaolin and mica in paint and rubber
 - kaolin in paper
 - clays and mica in plastics

 Notable Occurances: include many mines up and down the Appalachian Mountains and in California and Texas, USA; Germany; Florence, Italy; Tyrol, Austria; Transvaal, South Africa and Shetland, Scotland.

Mining Methods

Overburden removal

Most talc deposits are open-pit mines. The waste rock covering the talc vein is removed using shovels.

Talc extraction

The exposed talc is then extracted using shovels. Even at this early stage, the different ore types are sorted as they are extracted from the seam.

"Pedra Preta" Mine, in Brumado – Bahia state - Brazil

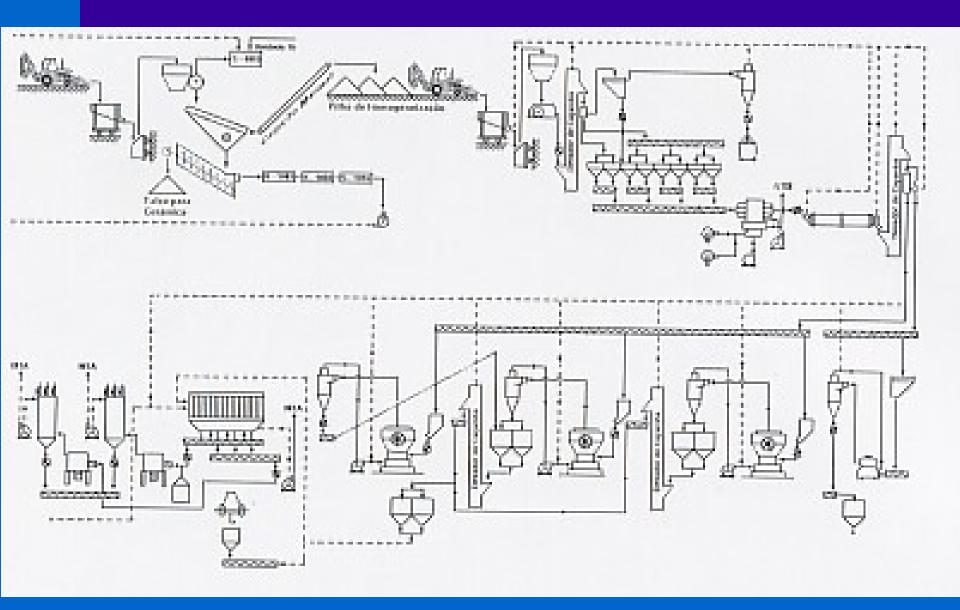
Mineral Processing

Beneficiation

According to their talc content and brightness is a key phase of the production process. Techniques include hand sorting, state-of-the-art laser and image analysis technology or flotation.

- ✓ First milling: to liberation size which can vary from 0.4 to 0.08 mm
- ✓ Magnetic Separators: remove magnetic materials.
- ✓ Froth Flotation: to improve product purity.
- ✓ Thickening
- √ Filtering
- ✓ Drying

✓ Milling


To obtain just the right particle size distribution curve and top cut for a given application, the techniques used include compressed air, steam and impact grinding. Median particle sizes can range from less than 1 micron to 15 microns, and top cuts from 6 microns to over 100 microns.

✓ Treated talcs

Certain grades of talc are treated, e.g. amine-coated talcs for fertilizers, silane-coated talcs for the rubber industry and cationic talcs for pitch control in papermaking. For the cosmetics and pharmaceuticals industries, talcs are heat-treated to decontaminate them.

✓ Talc delivery forms and packaging Talc powder is delivered in bags, semi-bulk bags or in bulk. Increasingly, there is a demand for talc in pellet form or as a liquid (slurry).

Mineral Processing Flow Sheet - Magnesita Inc.

Mine Production and Reserve

Salient Statistics—United States:	2013	<u>2014</u>	2015	2016	2017°
Production, mine	542	608	615	536	550
Sold by producers	560	551	535	527	540
Imports for consumption	275	308	322	378	380
Exports	196	190	206	169	210
Consumption, apparent ²	621	726	731	745	710
Price, average, milled, dollars per metric ton ³	163	171	186	193	200
Employment, mine and mill, talc4	250	230	239	223	210
Employment, mine and mill, pyrophyllite4	23	26	29	30	31
Net import reliance5 as a percentage of					
apparent consumption	13	14	16	28	23

Recycling: Insignificant.

USGS Commodity Summaries thousand metric tons

World Mine Production and Reserves:

	Mine pr	Reserves [€]	
	2016	2017e	
United States (crude)	536	550	140,000
Brazil (crude and beneficiated)7	850	850	52,000
China (unspecified minerals)	1,800	1,900	Large
France (crude)	450	470	Large
India ⁷	1,000	1,000	110,000
Japan ⁷	365	370	100,000
Korea, Republic of ⁷	600	610	11,000
Mexico	700	650	Large
Other countries	⁷ 1,680	⁷ 1,700	Large
World total (rounded)	⁷ 7,900	⁷ 8,100	Large

<u>World Resources</u>: The United States is self-sufficient in most grades of talc and related minerals. Domestic and world resources are estimated to be approximately five times the quantity of reserves.

Lithium

Lithium—introduction

- Lightest of all metals
- Critical mineral
- lithium rich brines (lithium salt) and hard rock ore (lithium minerals)
 - mineable brines is about 0.023 to 0.15%
 - <u>- ore is about 1 4%</u>

Lithium—properties

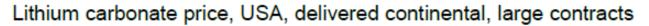
- silvery
- highest specific heat of any solid element, it has found use in heat transfer applications
- corrosive

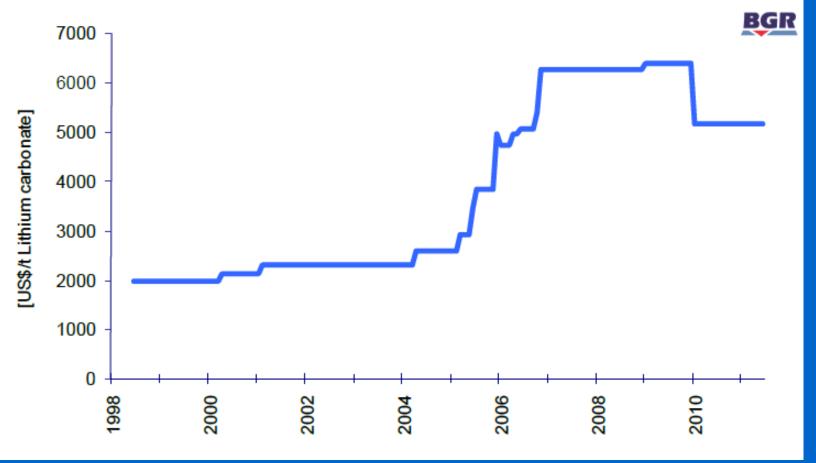
Lithium—uses

- special glasses and ceramics
- synthesis of organic compounds
- alloying agent
- battery anode material
- Lithium stearate high-temperature lubricant
- greases
- Cosmetics and skin preparations
- primary aluminum production

Lithium—substitutions

- sodic and potassic fluxes in ceramics and glass manufacture
- calcium and aluminum soaps as substitutes for stearates in greases
- zinc, magnesium, calcium, and mercury as anode material in primary batteries


Lithium—production


Salient Statistics—United States:	2013 1870	2014	2015	2016	2017 ^e
Production	1870	W	W	W	W
Imports for consumption	2,210	2,130	2,750	3,140	3,430
Exports	1,230	1,420	1,790	1,520	1,850
Consumption, estimated	2,000	² 2,000	² 2,000	² 3,000	² 3,000
Price, annual average, battery-grade lithium					
carbonate, dollars per metric ton ³	6,800	6,690	6,500	8,650	13,900
Employment, mine and mill, number	70	70	70	70	70
Net import reliance4 as a percentage of					
estimated consumption	>50	>25	>25	>50	>50

World Mine Production and Reserves: Reserves for Australia and the United States were revised based on new information from Government and industry sources.

	Mine pr	Reserves ⁶	
	2016	2017°	
United States	W	W	35,000
Argentina	5,800	5,500	2,000,000
Australia	14,000	18,700	72,700,000
Brazil	200	200	48,000
Chile	14,300	14,100	7,500,000
China	2,300	3,000	3,200,000
Portugal	400	400	60,000
Zimbabwe	1,000	1,000	23,000
World total (rounded)	838,000	843,000	16,000,000

Price

•

PRICES

The prices (Industrial Minerals 2004) of various lithium ores (in dollars per short ton) are

Ceramic 7.25% Li₂O \$330 to \$350 (free on board

spodumene: [f.o.b.] West Virginia)

Glass-grade 5% Li₂O \$195 to \$200

spodumene: (f.o.b. Amsterdam)

Petalite: 4.2% Li₂O \$165 to \$260

(f.o.b. Durban)

Market

Table 2. World market shares for various lithium end-uses from 2007 through 2009.

[World market share is expressed as a percentage (%) of the total global sales of lithium; production is in metric tons of contained lithium. Data are from Jaskula (2008–2010)]

End-use	2007	2008	2009
World market share:			
Ceramics and glass	18%	31%	30%
Batteries	25%	23%	21%
Lubricating greases	12%	10%	10%
Pharmaceuticals and polymers	7%	7%	7%
Air conditioning	6%	5%	5%
Primary aluminum (alloying)	4%	3%	3%
Other	28%	21%	24%
World production, in metric tons of contained lithium	25,400	25,400	18,000

http://pubs.usgs.gov/c irc/1371/pdf/circ1371_ 508.pdf

Uses

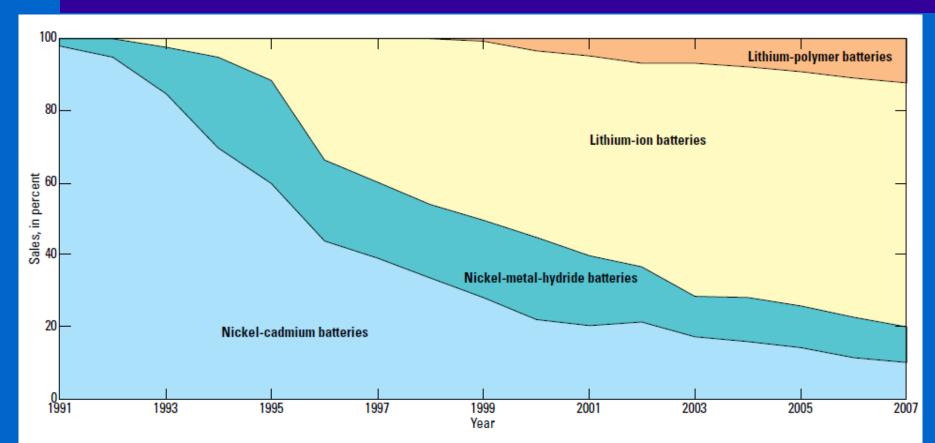


Figure 2. Chart showing sales of rechargeable batteries worldwide from 1991 through 2007. Values are expressed as percentage of total global sales of rechargeable batteries. Data are from Wilburn (2007) and Takashita (2008).

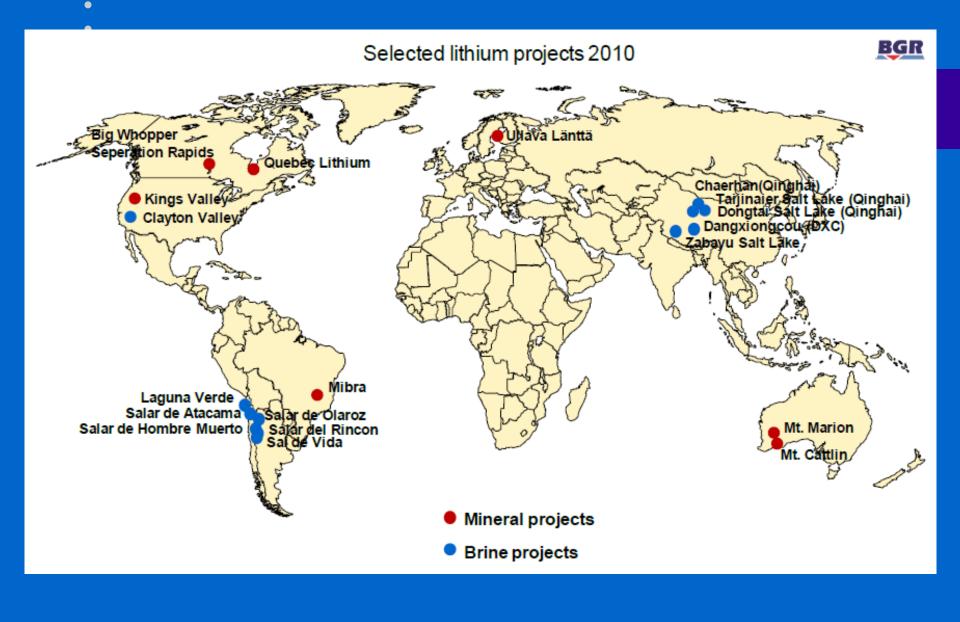
http://pubs.usgs.gov/circ/1371/pdf/circ1371_508.pdf

Lithium—geology

- Lepidolite, spodumeme, petalite, and amblygonite
- brines of Searles Lake, California and Nevada
- pegmatites
- clay mineral hectorite (smectite), bentonite
- lacustrine/playa deposits

Table 3. World production of lithium from minerals and brine in 2008, by country.

[Values are in metric tons of contained lithium. Production data are estimated and rounded to no more than three significant digits. Table includes data available through April 1, 2009. Data are from Jaskula (2008) and Tahil (2008). LiCl, lithium chloride; Li₂CO₃, lithium carbonate; NA, not available]

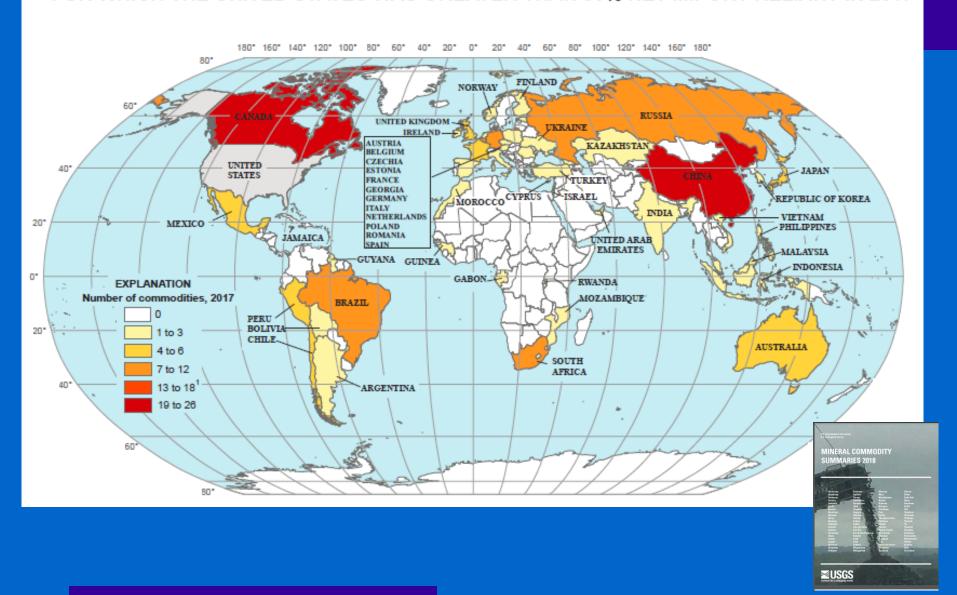

Country ¹	Deposit type	Lithium product	Production
Production from minerals:			
Australia	Spodumene	Concentrate	6,280
Brazil	Various	Concentrate	160
Canada ²	Spodumene	Concentrate	690
China	Various	Li ₂ CO ₃	880
Portugal	Lepidolite	Concentrate	700
Zimbabwe	Various	Concentrate	500
Total			9,210
Production from brine:			
Argentina ³	NA	Li ₂ CO ₃	1,880
	NA	LiCl	1,290
Chile ³	NA	Li ₂ CO ₃	9,870
	NA	LiCl	720
China	NA	Li ₂ CO ₃	2,410
United States ⁴	NA	Li ₂ CO ₃	1,710
Total			17,900

¹Other countries produce small amounts of lithium but are not included here.

²Based on all Canada's spodumene concentrates (Tantalum Mining Corp. of Canada Ltd., Tanco property).

³New information was available from Argentine and Chilean sources, prompting major revisions in how lithium production was reported.

⁴The estimate for the United States is taken as the suggested production of Chemetall's Clayton Valley mine at Silver Peak, Nevada, as reported by Tahil (2008, p. 20).

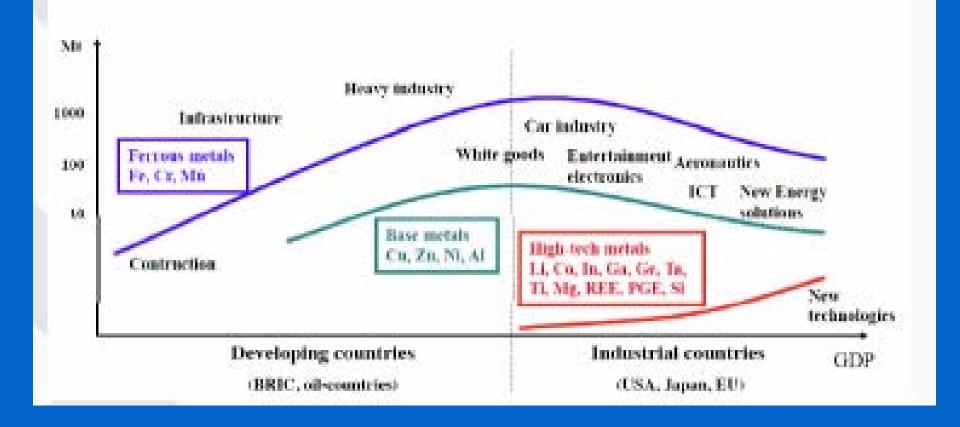

SUMMARY COMMENTS

2017 U.S. NET IMPORT RELIANCE¹

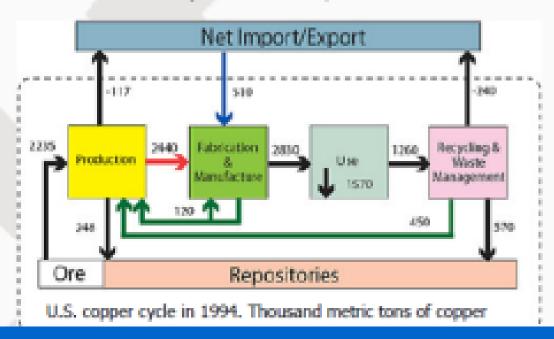
Commodity	Percent	Major import sources (2013–16) ²
ARSENIC (trioxide)	100	Morocco, China, Belgium
ASBESTOS	100	Brazil, Russia
CESIUM	100	Canada
FLUORSPAR	100	Mexico, China, South Africa, Vietnam
GALLIUM	100	China, Germany, United Kingdom, Ukraine
GRAPHITE (natural)	100	China, Mexico, Canada, Brazil
INDIUM	100	Canada, China, France, Republic of Korea
MANGANESE	100	South Africa, Gabon, Australia, Georgia
MICA, sheet (natural)	100	China, Brazil, Belgium, Austria
NEPHELINE SYENITE	100	Canada
NIOBIUM (columbium)	100	Brazil, Canada, Russia
QUARTZ CRYSTAL (Industrial)	100	China, Japan, Romania, United Kingdom
RARE EARTHS	100	China, Estonia, France, Japan
RUBIDIUM	100	Canada
SCANDIUM	100	China
STRONTIUM	100	Mexico, Germany, China
TANTALUM	100	Brazil, Rwanda, Australia, Canada
THALLIUM	100	Russia, Germany
THORIUM	100	India, United Kingdom
VANADIUM	100	Czechia, Austria, Canada, Republic of Korea
YTTRIUM	100	China, Estonia, Japan, Germany
GEMSTONES	99	Israel, India, Belgium, South Africa
BISMUTH	96	China, Belgium, Peru
POTASH	92	Canada, Russia, Israel, Chile
TITANIUM MINERAL CONCENTRATES	91	South Africa, Australia, Canada, Mozambique
ANTIMONY (oxide)	85	China, Belgium, Bolivia
ZINC	85	Canada, Mexico, Peru, Australia
STONE, dimension	83	China, Brazil, Italy, Turkey
RHENIUM	80	Chile, Belgium, Germany, Poland
ABRASIVES, fused aluminum oxide (crude)	>75	China, Canada, France
ABRASIVES, silicon carbide (crude)	>75	China, Netherlands, South Africa, Romania
BARITE	>75	China, India, Mexico, Morocco
BAUXITE	>75	Jamaica, Brazil, Guinea, Guyana
TELLURIUM	>75	Canada, China, Belgium, Philippines
TIN	75	Peru, Indonesia, Malaysia, Bolivia
COBALT	72	Norway, China, Japan, Finland
PEAT	71	Canada
DIAMOND (dust, grit, and powder)	70	China, Ireland, Russia, Romania
CHROMIUM	69	South Africa, Kazakhstan, Russia
PLATINUM	68	South Africa, Germany, United Kingdom, Russia
SILVER	62	Mexico, Canada, Peru, Poland
ALUMINUM	61	Canada, Russia, United Arab Emirates, China

MAJOR IMPORT SOURCES OF NONFUEL MINERAL COMMODITIES FOR WHICH THE UNITED STATES WAS GREATER THAN 50% NET IMPORT RELIANT IN 2017

TABLE 1.—U.S. MINERAL INDUSTRY TRENDS

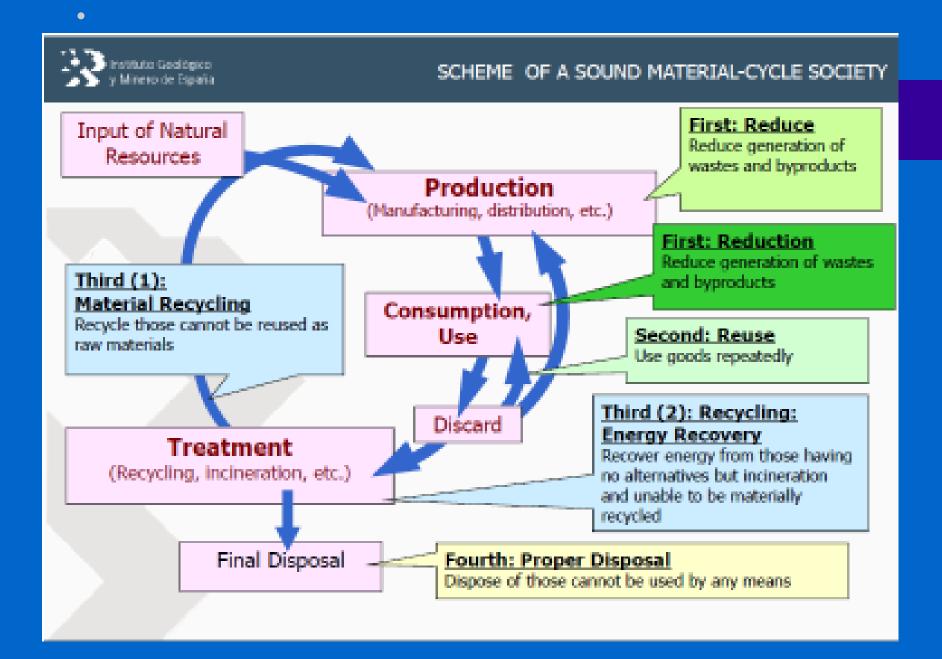

	2013	2014	2015	2016	2017 ^e
Total mine production (million dollars):					
Metals	29,900	28,900	24,400	23,500	26,300
Industrial minerals	43,100	49,600	48,200	47,300	48,900
Coal	36,700	34,800	28,500	22,300	24,500
Employment (thousands of production workers):					
Coal mining	67	62	54	42	42
Nonfuel mineral mining	100	100	99	95	97
Chemicals and allied products	491	497	507	516	523
Stone, clay, and glass products	275	280	296	307	310
Primary metal industries	306	310	307	296	301
Average weekly earnings of production workers (dollars):					
Coal mining	1,362	1,435	1,387	1,336	1,430
Chemicals and allied products	918	917	928	951	1,010
Stone, clay, and glass products	782	828	842	850	870
Primary metal industries	959	991	987	1,003	997

^{*}Estimated.


Sources: U.S. Geological Survey, U.S. Department of Energy, and U.S. Department of Labor.

Growing Demand for Earth Resources

- Material Flow Analysis: systematic accounting of the flows and stocks of materials within a system defined in space and time.
- Fossil fuels: consumed when burned to generate usable energy
- Nonfuel minerals: can be recycled after initial use
 - primary resources: extracted from Earth's crust
 - secondary resources: recovered from scrap
 - "tertiary" resources: imports of metals or metal-containing products.



Red: processing of domestic copper ore

Green: recycled material

Blue: imported material in
semifinished or finished products
2,8 Mt used:

- 70% primary
- 16% secondary
- 13% tertiary

http://www.kotu.oulu.fi/projektit/oms/map3/Manuel_Regueiro.pdf

- Long term <u>mineral availability</u> (> 10 y) function of five factors:
 - Geologic: does the mineral resource exist
 - Technical: can we extract and process it
 - Environmental and social: can we produce it in environmentally and socially accepted ways
 - Political: how do governments influence availability through their policies and actions
 - Economic: can we produce it at a cost users are willing and able to pay
- Short- and medium-term availability (< 10 y):
 - Significant restrictions to supply may occur: physical unavailability or higher prices.

Economics will prevail, which means metallurgists won't risk lowering major commodity (for example, Cu) recovery to improve byproduct recovery (for example, Te, In, Ge, Ga).

Reminders

- Commodity presentations—send me your powerpoints
- April 28 AIPG meeting and Field trip in afternoon (perlite mine or carbonatites)
- Research Projects presentation April 30
- Finals, written Project due May 4
- No class May 7