skip all navigation
skip banner links
skip primary navigation

Recent & Active Research

Use criteria in the form below to search by subject, program, keyword, feature or region. Combining search criteria may provide few or no results.




 
The current and recent research projects shown below are listed in random order.
Hydrologic Assessment of the Salt Basin Region in New Mexico and Texas
figure

In 2022, the NM Bureau of Geology and Mineral Resources completed a multiyear study with faculty and students at New Mexico Tech, as well as researchers at the U.S. Geological Survey, on a hydrogeologic assessment of the Salt Basin region. This research project evaluated the water availability of the region by 1) filling data gaps, where there is currently little or no information about the groundwater system; 2) estimating the overall balance of water in the region including groundwater recharge, storage, evaporation and pumping; 3) updating the current hydrologic model and hydrogeologic framework; and 4) running simulations in the revised model. These efforts will help assess the ability of the region to sustain current groundwater withdrawals in the Salt Basin with implications for future development in New Mexico.

[read more...]

Spatial and temporal variations in voluminous caldera volcanism in southern New Mexico
figure

Masters of Science student, Karissa Vermillion, from New Mexico State University received an award for her proposal and will be mentored by Dr. Jake Ross.

The New Mexico Geochronology Research Laboratory (NMGRL) is a participant in the “Awards for Geochronology Student Research” program (AGeS2 ). AGeS2 grants are funded by the National Science Foundation Earthscope program, in conjunction with the Geological Society of America, and are designed to link students with geochronology laboratories to facilitate in depth student understanding of geochronology methods with hands on experience ultimately leading to publication of new data.

[read more...]

Precursors to Supereruptions at the Valles Caldera, New Mexico
figure
Matt Zimmerer

Despite recognition as one the most iconic volcanoes on the planet, there is still much to learn about Valles caldera in north-central NM. A new collaboration between researchers at the Bureau and from UT Austin is seeking to understand the events leading up to supereruptions. In particular, the team is studying the Cerro Toledo Formation, a group of volcanic domes and related ashes that erupted between the large caldera forming events at 1.61 and 1.23 million-years-ago.

[read more...]

High Plains Aquifer Monitoring
figure

The NMBGMR is working with the Ogallala Land & Water Conservancy to measure water levels in the High Plains Aquifer system near Clovis, New Mexico.

[read more...]

Detrital zircon provenance of the Paleozoic Morrison Block
figure

Pre-Cordilleran rocks of western North America are predominantly composed of inboard, more stratigraphically coherent assemblages and more outboard assemblages with tectonostratigraphic histories obscured by extensive deformation, magmatism, and metamorphism. Inboard assemblages generally represent autochthonous deposits of the western Laurentian continental margin that formed in response to the breakup of the Rodinian supercontinent whereas outboard packages define a tectonic collage representing westward continental growth since mid-Paleozoic time . Detrital zircon U-Pb geochronology of metasedimentary strata across western North America has revealed varied sedimentary sources from both within and without the Laurentian craton that shift through time and space.

[read more...]

REE in Coal and associated strata in the San Juan and Raton basins, New Mexico
figure

The Department of Energy has awarded New Mexico Tech a contract to examine rare earth elements (REE) and other critical minerals (CM) in coal and associated strata in the San Juan and Raton basins in northern New Mexico. Critical minerals are mineral resources that are essential to our economy and whose supply may be disrupted (/publications/periodicals/earthmatters/23/n1/em_v23_n1.pdf). Most CM are 100% imported into the U.S. Many CM are found in the San Juan and Raton basins of New Mexico.

[read more...]

Geology of the Engle and Palomas Basins, Sierra County, New Mexico
figure

Geologists and hydrologists have been interested in basin-fill sediments of the Engle and Palomas Basins in Sierra County since the early 1900s. These Rio Grande rift basins contain packages of sediment shed from the surrounding uplifts over the last ~27,000,000 years. Well logs indicate that these basin-fill deposits, named the Santa Fe Group, are as much as 2 kilometers thick in places.

[read more...]

Rio Arriba County Hydrogeology
figure

Evaluate the quantity and quality of water in Rio Arriba regional aquifers in the communities of Chama, Dixon, Abiquiu, Medanales, and El Rito.

[read more...]

Middle Rio Grande Operational Monitoring: San Acacia to South Fort Craig
figure

The New Mexico Bureau of Geology and Mineral Resources with New Mexico Tech is beginning a groundwater and surface water study along the Rio Grande between San Acacia and Fort Craig. The NM Interstate Stream Commission has established a funding agreement with New Mexico Tech and the Bureau of Geology to investigate hydrologic connections among the Rio Grande, the Low Flow Conveyance Channel (LFCC), the riparian aquifer, and the riparian ecosystem along the San Acacia Reach of the Rio Grande. In particular, the project aims to understand the effects of diverting monsoon-season flood peaks from the Rio Grande into the LFCC under certain river-drying conditions.

[read more...]

Unearthing the Cordilleran magmatic periphery of eastern New Mexico
figure

Currently seeking a graduate student to work on minor mid-Cenozoic igneous occurrences in eastern New Mexico, which form a patchy discontinuous belt representing the most distal periphery of Cordilleran magmatism emplaced approximately 50-200 km east of the closest major alkaline magmatic centers. They have received little attention and present excellent opportunities for exciting fieldwork, novel research, and impactful student mentorship. Initial reconnaissance of these igneous rocks is building towards holistic studies addressing basic aspects of these occurrences through mapping, petrography, geochemistry, and geochronology. This work will lead to bigger questions on the relationship between these peripheral intrusions and more major alkaline magmatic centers, exhumation and heat flow histories recorded in these rocks, and significance for tectonics of paleo-plate dynamics of the SW US Cordilleran margin!

[read more...]