skip all navigation
skip banner links
skip primary navigation

Recent & Active Research — Mineral Resources

Mineral resources, like copper, silver, gold, uranium, zeolites, perlite, potash, and carbon dioxide all contribute to New Mexico's economy. Since our establishment in 1927, the Bureau has worked in mining districts throughout New Mexico. These are some of our projects.

Use criteria in the form below to search by keyword, feature or region. Combining search criteria may provide few or no results.



 
The current and recent research projects shown below are listed in random order.
Do Martian manganese oxide deposits reveal biosignatures?
figure

The recent discovery of manganese oxides on Mars suggests more oxygen was present in the Martian atmosphere the originally thought. A pilot project was recently funded by NASA to test the feasibility of discovering biosignatures in manganese deposits on Mars with payload instruments. There are two primary goals for this project; the first is to identify key chemical signatures and second to identify key mineralogical signatures in natural biologic and abiologic manganese materials. The pilot project will focus on three field sites in New Mexico that display features of formation that range from at or near the surface then extend to the deeper subsurface; essentially examining manganese deposits from surface, cave, geothermal springs, finally fossil hydrothermal environments. Should sufficient variation be noted during the pilot project, additional funding to the project will further characterize terrestrial occurrences for comparison to Mars by utilizing rover payload instruments

[read more...]

Capillary Raman Cell Experiments: The rare earth elements are in hot water (and feeling salty)!
figure

Somewhere in the Earth’s crust a hot fluid is seeping through tiny cracks and fissures in the rock. The fluid is water and it carries with it a cargo of dissolved ions like chloride, sulfate, or carbonate. It might also carry dissolved metal ions useful to humans such copper, gold, or, in the case that we are considering, rare earth elements (REE). Fluids like this play important roles in forming ore deposits where the REE are present in high enough amounts to be mined. We want to understand how the REE interact with other dissolved ions and the water itself in order to better understand the conditions that allow water to mobilize, transport, or deposit REE.

[read more...]

Critical Minerals in Mine Wastes

There are tens of thousands of inactive mine features in 274 mining districts in New Mexico (including coal, uranium, metals, and industrial minerals districts). However, many of these mines have not been inventoried or prioritized for reclamation or reprocessing. Many of these mines have existing mine wastes, generated during mineral production, which could have potential for critical minerals, especially since the actual mineral production was generally for precious and base metals and not critical minerals. The purpose of this project is to inventory, characterize and estimate the critical mineral endowment of mine wastes using USGS sampling procedures. This project is important to the state of New Mexico because critical mineral resources must be identified before land exchanges, withdrawals or other land use decisions are made by government officials. Future mining of mine wastes that potentially contain critical minerals will directly benefit the economy of New Mexico. Possible re-mining and/or reprocessing of mine wastes could clean up these sites and pay for reclamation. Furthermore, this project will include training of younger, professional geologists and students in economic and reclamation geology by the PIs.

[read more...]

Critical Minerals in the Zuni Mountains, Cibola and McKinley Counties, New Mexico

As part of the Earth MRI project “Geochemical reanalysis of NURE samples from the Colorado Plateau, New Mexico, Utah, Colorado, and Arizona” (G23AC00561), New Mexico is resampling geologic material, including stream sediments and rocks, in the Zuni Mountains, Cibola and McKinley Counties. The purpose of this sampling is to assess the critical minerals potential of this area, which was historically mined for fluorspar and base metals. An exploration geochemistry focused class was taught in the fall semester of 2023. Sampling in the Zuni Mountains was conducted primarily by this class which allowed 17 students with varying field experience to learn how to plan and execute a sampling program. The students were split into five groups to sample different areas within the Zuni Mountains.

[read more...]

MINES Thermodynamic Database
figure

The MINES Thermodynamic Database is an initiative to generate a revised internally consistent thermodynamic dataset for minerals, aqueous species and gases for simulating geochemical processes at hydrothermal conditions in the upper crust (≤5 kbar and ≤600 °C) with focus on ore forming processes.

Alexander GysiEconomic Geologist

[read more...]

Lemitar Carbonatite: Exploring the Hidden World of Minerals: A Spectroscopic Adventure!
figure

At the forefront of cutting-edge research at New Mexico Tech, we have been utilizing Raman spectroscopy to unravel the mysteries locked within minerals. By harnessing the power of visible and ultraviolet lasers, we can unlock a plethora of information. So, you may be asking, what is Raman spectroscopy? In simple terms, it's a technique that uses laser light to interact with the atomic vibrations of a material, producing a unique "fingerprint" of its molecular composition. By analyzing the scattered light, we are able to identify and characterize minerals such as apatite, fluorite, and calcite.

[read more...]

Uranium Transport and Sources in New Mexico: A five-year EPSCoR program
figure

In 2013, a team of New Mexico Tech researchers began a study of uranium transport, uranium source characteristics, and uranium legacy issues in New Mexico. The effort was funded by Energize New Mexico, a five-year NSF EPSCoR program that concluded in 2018 and that encompassed five research components focused on developing non-carbon emitting energy technologies. The uranium team, which included researchers from UNM, addressed uranium deposits and mine waste mainly in the Grants Mining District, including Laguna Pueblo, and on Navajo Nation lands. These uranium studies span a range of science and engineering disciplines, and not only provide new conclusions impacting remediation, hazard management, and uranium extraction, but hold implications for human health.

[read more...]

AML Project: Inventory and Characterization of Legacy/inactive/abandoned mine (AML) features in New Mexico
figure

The NMBGMR has been examining the environmental effects of mine waste rock piles throughout New Mexico since the early 1990s. There are tens of thousands of inactive or abandoned mine features in 274 mining districts in New Mexico (including coal, uranium, metals, and industrial minerals districts), however many of them have not been inventoried or prioritized for reclamation. The New Mexico Abandoned Mine Lands Bureau of the New Mexico Energy, Minerals and Natural Resources Department estimates that there are more than 15,000 abandoned mine features in the state. The U.S. Bureau of Land Management recently estimated that more than 10,000 mine features are on BLM lands in New Mexico and only 705 sites have been reclaimed. The U.S. Park Service has identified 71 mine features in 7 parks in New Mexico, of which 12 have been mitigated and 34 require mitigation. Additional sites have been reclaimed by the responsible companies and the Superfund program (CERCLA).

The New Mexico Bureau of Geology and Mineral Resources has collected published and unpublished data on the districts, mines, deposits, occurrences, and mills since it was created in 1927 and is slowly converting historical data into a relational database, the New Mexico Mines Database. More than 8,000 mines are recorded in the New Mexico Mines Database and more than 7,000 are inactive or abandoned. These mines often include two or more actual mine features. Past funding has been from the Army Corps of Engineers, the New Mexico Abandoned Mine Lands Bureau of the New Mexico Energy, Minerals and Natural Resources Department, and EPSoR (Experimental Program to Stimulate Competitive Research; http://archive.nmepscor.org/). Some of this project is now funded under the U.S. Geological Survey EARTH MRI program (Earth Mapping Resources Initiative (Earth MRI) | U.S. Geological Survey (usgs.gov).

[read more...]

REE in Coal and associated strata in the San Juan and Raton basins, New Mexico
figure

The Department of Energy has awarded New Mexico Tech a contract to examine rare earth elements (REE) and other critical minerals (CM) in coal and associated strata in the San Juan and Raton basins in northern New Mexico. Critical minerals are mineral resources that are essential to our economy and whose supply may be disrupted (/publications/periodicals/earthmatters/23/n1/em_v23_n1.pdf). Most CM are 100% imported into the U.S. Many CM are found in the San Juan and Raton basins of New Mexico.

[read more...]