Building on its basin-scale hydrogeologic studies of the Española Basin (2003-2010), the Aquifer Mapping Program continues to monitor water levels in the area for a better understanding of the groundwater contribution to the wetlands around La Cienega. This work was completed with collaboration and support from NMED, NMOSE, Santa Fe County, and USF&WS and the Healy Foundation.
It is surprising that New Mexico does not have a detailed map of all of the productive and accessible aquifers across the state. In a state with as little as 0.24% of our land surface covered with water (the least in the country!), having detailed maps of our groundwater resources and aquifers, is essential. Some of our neighboring states, like Texas and Colorado, have these maps already available, and are successfully being used to administer and conserve water. We have started a new multi-year project to develop 3D maps of aquifers.
The Aquifer Mapping Program at New Mexico Bureau of Geology and Mineral Resources (NMBGMR), with funding from Healy Foundation and the USGS, has created the statewide Healy Collaborative Groundwater Monitoring Network for New Mexico. This voluntary network began in 2016 and gathers new and existing data on groundwater levels to help us understand how our state's groundwater resources are changing through time, promote increased awareness of water issues around New Mexico, and provide an important foundation for making informed water-management decisions.
Water for the city of Rio Rancho comes solely from groundwater held in the Santa Fe Group aquifer, which extends several thousands of feet below the surface. This aquifer is composed primarily of sand that was deposited over several million years as the Albuquerque basin dropped down along several major fault zones. What parts of this critical aquifer are most optimal for storing and transmitting this precious resource, and where are they located in the subsurface?
To answer these questions, the New Mexico Bureau of Geology and Mineral Resources studied permeability-related properties of Rio Rancho’s aquifer using both outcrops and well data. Within this aquifer, we mapped the depths and extents of hydrostratigraphic units and evaluated lateral changes in permeability within a given unit.
Geologists and hydrologists have been interested in basin-fill sediments of the Engle and Palomas Basins in Sierra County since the early 1900s. These Rio Grande rift basins contain packages of sediment shed from the surrounding uplifts over the last ~27,000,000 years. Well logs indicate that these basin-fill deposits, named the Santa Fe Group, are as much as 2 kilometers thick in places.
The main objective of this study is to examine hydrogeologic processes in Snowy River Passage by analysis of individual flood events. For a specific flood event, we will measure:
The volume of water that infiltrates downward through the Snowy River streambed
The volume of water that evaporates from the Snowy River stream
The volume of water that discharges at Government Spring
An aquifer can be considered like a bank account. The deposits or credits typically consist of natural recharge adding water to the aquifer (like precipitation or river water seeping into the ground and reaching the groundwater table). Withdrawals take water out of the aquifer, and can include discharge into rivers or pumping of wells. Most cities are concerned with the withdrawal side of the equation and hope nature takes care of the deposits. But Albuquerque has undertaken the progressive measure of inputting additional recharge (deposits) now so there will be sufficient water for future withdrawals, something called managed aquifer recharge (MAR). To that end, the Albuquerque and Bernalillo County Water Utility Authority (ABCWUA) has recently completed a well for deep injection of excess river water into the aquifer, and is currently running surface water down the upper part of Bear Canyon Arroyo for near-surface recharge.
The work is funded by the ABCWUA and conducted by Dan Koning (P.I.), Colin Cikoski, Andy Jochems, and Alex Rinehart (now at NMT EES). The results have been released as Open-file Report 605 and as a summary Fact Sheet.
Since 2007, the sparsely populated San Agustin Plains has been a controversial basin: a company applied for a permit to pump 54,000 acre-feet per year and to pipe that water to a region outside of the Plains. In 2009, the neighboring watershed to the south, Alamosa Creek — the only perennial stream in the region — faced similar pressure with a mining company exploring for beryllium. In response to these pressures and questions about the hydrogeology of this area, the NM Bureau of Geology began an integrated geologic and hydrologic study of the basins in 2009.
In 2022, the NM Bureau of Geology and Mineral Resources completed a multiyear study with faculty and students at New Mexico Tech, as well as researchers at the U.S. Geological Survey, on a hydrogeologic assessment of the Salt Basin region. This research project evaluated the water availability of the region by 1) filling data gaps, where there is currently little or no information about the groundwater system; 2) estimating the overall balance of water in the region including groundwater recharge, storage, evaporation and pumping; 3) updating the current hydrologic model and hydrogeologic framework; and 4) running simulations in the revised model. These efforts will help assess the ability of the region to sustain current groundwater withdrawals in the Salt Basin with implications for future development in New Mexico.