skip all navigation
skip banner links
skip primary navigation

Recent & Active Research

Use criteria in the form below to search by subject, program, keyword, feature or region. Combining search criteria may provide few or no results.




 
The current and recent research projects shown below are listed in random order.
MINES Thermodynamic Database
figure

The MINES Thermodynamic Database is an initiative to generate a revised internally consistent thermodynamic dataset for minerals, aqueous species and gases for simulating geochemical processes at hydrothermal conditions in the upper crust (≤5 kbar and ≤600 °C) with focus on ore forming processes.

Alexander GysiEconomic Geologist

[read more...]

Middle Rio Grande Operational Monitoring: San Acacia to South Fort Craig
figure

The New Mexico Bureau of Geology and Mineral Resources with New Mexico Tech is beginning a groundwater and surface water study along the Rio Grande between San Acacia and Fort Craig. The NM Interstate Stream Commission has established a funding agreement with New Mexico Tech and the Bureau of Geology to investigate hydrologic connections among the Rio Grande, the Low Flow Conveyance Channel (LFCC), the riparian aquifer, and the riparian ecosystem along the San Acacia Reach of the Rio Grande. In particular, the project aims to understand the effects of diverting monsoon-season flood peaks from the Rio Grande into the LFCC under certain river-drying conditions.

[read more...]

Uranium Transport and Sources in New Mexico: A five-year EPSCoR program
figure

In 2013, a team of New Mexico Tech researchers began a study of uranium transport, uranium source characteristics, and uranium legacy issues in New Mexico. The effort was funded by Energize New Mexico, a five-year NSF EPSCoR program that concluded in 2018 and that encompassed five research components focused on developing non-carbon emitting energy technologies. The uranium team, which included researchers from UNM, addressed uranium deposits and mine waste mainly in the Grants Mining District, including Laguna Pueblo, and on Navajo Nation lands. These uranium studies span a range of science and engineering disciplines, and not only provide new conclusions impacting remediation, hazard management, and uranium extraction, but hold implications for human health.

[read more...]

Prelude to the ‘plano’: Assessing the contribution of Jurassic crustal thickening to growth of the Cretaceous Nevadaplano
figure

PhD. Student, Drew Levy, from the University of Nevada-Reno received an award for his proposal and will be working with Dr. Matthew Heizler.

The New Mexico Geochronology Research Laboratory (NMGRL) is a participant in the “Awards for Geochronology Student Research” program (AGeS2 ). AGeS2 grants are funded by the National Science Foundation Earthscope program, in conjunction with the Geological Society of America, and are designed to link students with geochronology laboratories to facilitate in depth student understanding of geochronology methods with hands on experience ultimately leading to publication of new data.

[read more...]

AML Project: Inventory and Characterization of Legacy/inactive/abandoned mine (AML) features in New Mexico
figure

The NMBGMR has been examining the environmental effects of mine waste rock piles throughout New Mexico since the early 1990s. There are tens of thousands of inactive or abandoned mine features in 274 mining districts in New Mexico (including coal, uranium, metals, and industrial minerals districts), however many of them have not been inventoried or prioritized for reclamation. The New Mexico Abandoned Mine Lands Bureau of the New Mexico Energy, Minerals and Natural Resources Department estimates that there are more than 15,000 abandoned mine features in the state. The U.S. Bureau of Land Management recently estimated that more than 10,000 mine features are on BLM lands in New Mexico and only 705 sites have been reclaimed. The U.S. Park Service has identified 71 mine features in 7 parks in New Mexico, of which 12 have been mitigated and 34 require mitigation. Additional sites have been reclaimed by the responsible companies and the Superfund program (CERCLA).

The New Mexico Bureau of Geology and Mineral Resources has collected published and unpublished data on the districts, mines, deposits, occurrences, and mills since it was created in 1927 and is slowly converting historical data into a relational database, the New Mexico Mines Database. More than 8,000 mines are recorded in the New Mexico Mines Database and more than 7,000 are inactive or abandoned. These mines often include two or more actual mine features. Past funding has been from the Army Corps of Engineers, the New Mexico Abandoned Mine Lands Bureau of the New Mexico Energy, Minerals and Natural Resources Department, and EPSoR (Experimental Program to Stimulate Competitive Research; http://archive.nmepscor.org/). Some of this project is now funded under the U.S. Geological Survey EARTH MRI program (Earth Mapping Resources Initiative (Earth MRI) | U.S. Geological Survey (usgs.gov).

[read more...]

The Healy Collaborative Groundwater Monitoring Network
figure

The Aquifer Mapping Program at New Mexico Bureau of Geology and Mineral Resources (NMBGMR), with funding from Healy Foundation and the USGS, has created the statewide Healy Collaborative Groundwater Monitoring Network for New Mexico. This voluntary network began in 2016 and gathers new and existing data on groundwater levels to help us understand how our state's groundwater resources are changing through time, promote increased awareness of water issues around New Mexico, and provide an important foundation for making informed water-management decisions.

[read more...]

Annual Albuquerque Water Table Mapping
figure
Albuquerque Bernalillo County Water Utility Authority

Water-table mapping for the City of Albuquerque

[read more...]

Rare Earth Element Critical Minerals Studied in a Hydrothermal Diamond Anvil Cell
figure

The world is changing fast. Advanced electronics such as smartphones and tablets are a staple of everyday life. Critical to these devices are the rare earth elements (REE). Unfortunately, the supply of REE around the world is limited, thus research into how REE mineral deposits form is needed to help guide us to new sources of these metals. One aspect of REE geochemistry that is not fully understood is how REE are transported in the hydrothermal fluids that form these deposits. How easily these elements can be transported depends upon the composition of the fluid and what ligands (negatively charged molecules) the REE elements bond to in the fluid, which is called complexation.

[read more...]

Geometry and Kinematics of Rift Faults
figure

The Rio Grande rift of central New Mexico is dominated by NNW- to NE-striking normal faults of Late Oligocene to Quaternary age. Crustal extension is distributed across many subparallel fault blocks. Fault traces commonly show abrupt changes in strike, often bifurcate, and occasionally step over to adjacent faults along transverse ramps (e.g. Chamberlin et.al, 1994a; Chamberlin and Harrison, 1996). Based on observations of striated fault surfaces most rift faults are apparently dip-slip to slightly oblique-slip normal faults. There is generally little or no evidence of significant strike slip faulting in areas of high-angle normal faulting. However, minor lateral slip may occur where a north or south propagating fault tip is deflected by a preexisting basement shear zone oriented at a high angle to the propagating rift fault (Chamberlin, 2000). Broad zones of lateral shear may be accommodated by a combination of minor vertical axis rotations and distributed oblique-slip normal faulting in which the dip-slip component is dominant.

[read more...]

Climate and Water Resources Advisory Report
figure
Dana Ulmer-Scholle

In support of development of a 50-year water plan for New Mexico, the Interstate Stream Commission has tasked the New Mexico Bureau of Geology & Mineral Resources with convening a group of 8 water and climate research experts as an Advisory Panel. Their task is to prepare a consensus study report on the current state of knowledge of how climate conditions and water resources may vary across our state during the next 50 years.

[read more...]