skip all navigation
skip banner links
skip primary navigation

Recent & Active Research — Geochronology

NMGRL is involved with a variety of research projects addressing volcanic hazards, climate change, plutonism, and uplift and tectonism (among many others). We are also deeply involved with development of technology for 40Ar/39Ar geochronology and noble gas mass spectrometers.

Use criteria in the form below to search by keyword, feature or region. Combining search criteria may provide few or no results.



 
The current and recent research projects shown below are listed in random order.
Precursors to Supereruptions at the Valles Caldera, New Mexico
figure
Matt Zimmerer

Despite recognition as one the most iconic volcanoes on the planet, there is still much to learn about Valles caldera in north-central NM. A new collaboration between researchers at the Bureau and from UT Austin is seeking to understand the events leading up to supereruptions. In particular, the team is studying the Cerro Toledo Formation, a group of volcanic domes and related ashes that erupted between the large caldera forming events at 1.61 and 1.23 million-years-ago.

[read more...]

Dating the Sands of Time

A new dating method, being developed at the NMBG&MR, uses our state-of-the-art geochronology laboratory, funded by NSF and NM Tech, to determine the age of detrital sanidine (tiny volcanic minerals) from sediments.

[read more...]

Lions and Tigers and Bears, Oh my!
figure

Actually, its bacteria and elephants and monkeys and humans, oh my! Geochronology (the determination of a rock's age) has a wide variety of applications; one of which is placing absolute age constraints on evolution. The New Mexico Geochronology Research Laboratory mainly focuses on projects in New Mexico and the Southwestern USA. However, in a role that fulfills its broader commitment to the scientific community, projects are undertaken from throughout the world. Recent collaborations with geologists, archeologists, and biologists have lead to exciting advances in our understanding of

  1. Mammal evolution in South America, including a refinement of when North American and South American critters began walking the present land bridge between the continents,
  2. When humans arrived in Java, Indonesia, and
  3. Confirmation that bacteria have lived in salt crystals found near the WIPP site in New Mexico for more than 200 million years

Publication and/or submission of these findings are being recognized in internationally acclaimed journals such as the Proceedings of the National Academy of Sciences, Nature, Science, and Geology.

[read more...]

Prelude to the ‘plano’: Assessing the contribution of Jurassic crustal thickening to growth of the Cretaceous Nevadaplano
figure

PhD. Student, Drew Levy, from the University of Nevada-Reno received an award for his proposal and will be working with Dr. Matthew Heizler.

The New Mexico Geochronology Research Laboratory (NMGRL) is a participant in the “Awards for Geochronology Student Research” program (AGeS2 ). AGeS2 grants are funded by the National Science Foundation Earthscope program, in conjunction with the Geological Society of America, and are designed to link students with geochronology laboratories to facilitate in depth student understanding of geochronology methods with hands on experience ultimately leading to publication of new data.

[read more...]

Spatial and temporal variations in voluminous caldera volcanism in southern New Mexico
figure

Masters of Science student, Karissa Vermillion, from New Mexico State University received an award for her proposal and will be mentored by Dr. Jake Ross.

The New Mexico Geochronology Research Laboratory (NMGRL) is a participant in the “Awards for Geochronology Student Research” program (AGeS2 ). AGeS2 grants are funded by the National Science Foundation Earthscope program, in conjunction with the Geological Society of America, and are designed to link students with geochronology laboratories to facilitate in depth student understanding of geochronology methods with hands on experience ultimately leading to publication of new data.

[read more...]

New Mexico's Volcanic Hazards
figure
photo by: Colin Cikowski

New Mexico is home to many hundreds of volcanoes that erupted during the last several million years. However, the exact timing of these eruptions has proven difficult to determine by many previous studies. An ongoing NSF-funded project, led by NM Bureau of Geology researcher Matthew Zimmerer, examines the timing of eruptions during the last 500,000 years in order to understand the patterns of volcanism in space and time. This information provides the foundation for an assessment of volcanic hazards in New Mexico.

[read more...]

Laramide Tectonics
figure
Jacob Thacker

The Laramide orogeny was a mountain building event that affected the US western interior during the Late Cretaceous to Paleogene (approximately 90–45 million years ago). Many of the iconic mountains and major oil and gas producing intermontane basins of the Rocky Mountains and Colorado Plateau, such as the Wind River range in Wyoming and the San Juan Basin here in New Mexico, formed during this time as Earth’s crust was compressed. The Laramide orogeny remains a major point of controversy, as it is difficult to explain how tectonism proceeded so far into the North American plate.

[read more...]

Detrital zircon provenance of the Paleozoic Morrison Block
figure

Pre-Cordilleran rocks of western North America are predominantly composed of inboard, more stratigraphically coherent assemblages and more outboard assemblages with tectonostratigraphic histories obscured by extensive deformation, magmatism, and metamorphism. Inboard assemblages generally represent autochthonous deposits of the western Laurentian continental margin that formed in response to the breakup of the Rodinian supercontinent whereas outboard packages define a tectonic collage representing westward continental growth since mid-Paleozoic time . Detrital zircon U-Pb geochronology of metasedimentary strata across western North America has revealed varied sedimentary sources from both within and without the Laurentian craton that shift through time and space.

[read more...]