skip all navigation
skip banner links
skip primary navigation

Research — Geochemistry

Use criteria in the form below to search by subject, program, keyword, feature or region. Combining search criteria may provide few or no results.




   
There are 10 projects that match your criteria:
Overview of Fresh and Brackish Water Quality - Raton-Las Vegas Basins
figure

Northeastern New Mexico is a geologically diverse area that includes the upper Pecos and Canadian river valleys, the eastern margin of the Sangre de Cristo Mountains, and the Raton and Las Vegas Basins, two north-trending assymetric structural basins formed during the late Cretaceous-Paleogene Laramide orogeny. The Raton and Las Vegas Basins are separated by igneous intrusive rocks of the Cimarron Arch, near Cimarron, NM. The gently-dipping eastern margins of these basins are defined by the Sierra Grande Arch and the Raton-Clayton volcanic field (Kelley, 2015; Broadhead, 2015).

[read more...]

Snowy River Passage, Ft. Stanton Cave
figure

The main objective of this study is to examine hydrogeologic processes in Snowy River Passage by analysis of individual flood events. For a specific flood event, we will measure:

  1. The volume of water that infiltrates downward through the Snowy River streambed
  2. The volume of water that evaporates from the Snowy River stream
  3. The volume of water that discharges at Government Spring

[read more...]

REE in Coal and associated strata in the San Juan and Raton basins, New Mexico
figure

The Department of Energy has awarded New Mexico Tech a contract to examine rare earth elements (REE) and other critical minerals (CM) in coal and associated strata in the San Juan and Raton basins in northern New Mexico. Critical minerals are mineral resources that are essential to our economy and whose supply may be disrupted (/publications/periodicals/earthmatters/23/n1/em_v23_n1.pdf). Most CM are 100% imported into the U.S. Many CM are found in the San Juan and Raton basins of New Mexico.

[read more...]

Hydrologic Assessment of the Salt Basin Region in New Mexico and Texas
figure

In 2022, the NM Bureau of Geology and Mineral Resources completed a multiyear study with faculty and students at New Mexico Tech, as well as researchers at the U.S. Geological Survey, on a hydrogeologic assessment of the Salt Basin region. This research project evaluated the water availability of the region by 1) filling data gaps, where there is currently little or no information about the groundwater system; 2) estimating the overall balance of water in the region including groundwater recharge, storage, evaporation and pumping; 3) updating the current hydrologic model and hydrogeologic framework; and 4) running simulations in the revised model. These efforts will help assess the ability of the region to sustain current groundwater withdrawals in the Salt Basin with implications for future development in New Mexico.

[read more...]

Uranium Transport and Sources in New Mexico: A five-year EPSCoR program
figure

In 2013, a team of New Mexico Tech researchers began a study of uranium transport, uranium source characteristics, and uranium legacy issues in New Mexico. The effort was funded by Energize New Mexico, a five-year NSF EPSCoR program that concluded in 2018 and that encompassed five research components focused on developing non-carbon emitting energy technologies. The uranium team, which included researchers from UNM, addressed uranium deposits and mine waste mainly in the Grants Mining District, including Laguna Pueblo, and on Navajo Nation lands. These uranium studies span a range of science and engineering disciplines, and not only provide new conclusions impacting remediation, hazard management, and uranium extraction, but hold implications for human health.

[read more...]

Overview of Fresh and Brackish Water Quality - EspaƱola Basin
figure

The Española Basin is one of the northernmost basins of the Rio Grande Rift in New Mexico, and has been subject to extensive investigations in the past several decades (e.g., Kelley, 1978; Manley, 1979; Cordell, 1979; Golombek, 1983; Biehler et al., 1991; Johnson et al., 2008; Grauch et al., 2009). Although the Española Basin has the general form of a west-dipping half-graben, it exhibits a high level of structural complexity, consisting of a series of narrow, deep axial troughs in an otherwise shallow basin (Ferguson et al., 1995). The basin is ~50 miles long and 18 to 40 miles wide, and is linked to the east-dipping Santo Domingo Basin to the south at the La Bajada constriction. The basin is connected to the north with the east-dipping San Luis basin at the Embudo constriction. The Santa Fe Embayment occupies the southeast corner of the basin.

[read more...]

Scientists Use Ancient Ore Deposits to Predict Ground Water Quality and Paleoclimate
figure

Two Bureau of Geology scientists, in collaboration with scientists at the United State Geological Survey, have discovered similarities between ground water systems that formed ore deposits 10 million years ago and modern ground water in the Rio Grande Rift. They reported their work in an invited presentation at the 2000 Annual Meeting of the Geological Society of America.

Dr. Virgil Lueth, mineralogist/ economic geologist, and Lisa Peters, senior lab associate at the New Mexico Geochronological Research Lab, have been studying the mineral jarosite in ore deposits from Chihuahua, Mexico, to Albuquerque.

[read more...]

Hydrogeologic Investigation at White Sands National Monument
figure

This study focused on the shallow aquifer that occurs in the dune field with depth-to-water ranging from 1 to 3 feet below interdunal surfaces. We used hydrologic and geochemical data to identify water sources that contribute to the shallow groundwater system in the dune field and to assess how this system responds to water level fluctuations in the adjacent regional basin-fill aquifer. Hydrologic modeling was used to assess the effects of projected additional groundwater pumping in Alamogordo on the shallow dune aquifer on the Monument.

[read more...]

Volcanic record in Antarctic ice
figure

Volcanic ash and associated aerosol layers in glacier ice offer a uniquely complete record of explosive volcanism. Investigation of these layers, both in bare ice areas of and in ice cores offers insight into eruptive processes, local and regional ice flow processes, and the impact of eruptions on global systems (climate and ozone depletion). The Antarctic ice sheet is an ideal place to preserve a record of volcanic eruptions. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with tephra layers in Antarctic blue ice allows establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanism, atmospheric loading, and climatic effects associated with volcanic eruptions.

[read more...]

Lemitar Carbonatite: Exploring the Hidden World of Minerals: A Spectroscopic Adventure!
figure

At the forefront of cutting-edge research at New Mexico Tech, we have been utilizing Raman spectroscopy to unravel the mysteries locked within minerals. By harnessing the power of visible and ultraviolet lasers, we can unlock a plethora of information. So, you may be asking, what is Raman spectroscopy? In simple terms, it's a technique that uses laser light to interact with the atomic vibrations of a material, producing a unique "fingerprint" of its molecular composition. By analyzing the scattered light, we are able to identify and characterize minerals such as apatite, fluorite, and calcite.

[read more...]