skip all navigation
skip banner links
skip primary navigation

Recent & Active Research

Use criteria in the form below to search by subject, program, keyword, feature or region. Combining search criteria may provide few or no results.




 
The current and recent research projects shown below are listed in random order.
Middle Rio Grande Operational Monitoring: San Acacia to South Fort Craig
figure

The New Mexico Bureau of Geology and Mineral Resources with New Mexico Tech is beginning a groundwater and surface water study along the Rio Grande between San Acacia and Fort Craig. The NM Interstate Stream Commission has established a funding agreement with New Mexico Tech and the Bureau of Geology to investigate hydrologic connections among the Rio Grande, the Low Flow Conveyance Channel (LFCC), the riparian aquifer, and the riparian ecosystem along the San Acacia Reach of the Rio Grande. In particular, the project aims to understand the effects of diverting monsoon-season flood peaks from the Rio Grande into the LFCC under certain river-drying conditions.

[read more...]

Lions and Tigers and Bears, Oh my!
figure

Actually, its bacteria and elephants and monkeys and humans, oh my! Geochronology (the determination of a rock's age) has a wide variety of applications; one of which is placing absolute age constraints on evolution. The New Mexico Geochronology Research Laboratory mainly focuses on projects in New Mexico and the Southwestern USA. However, in a role that fulfills its broader commitment to the scientific community, projects are undertaken from throughout the world. Recent collaborations with geologists, archeologists, and biologists have lead to exciting advances in our understanding of

  1. Mammal evolution in South America, including a refinement of when North American and South American critters began walking the present land bridge between the continents,
  2. When humans arrived in Java, Indonesia, and
  3. Confirmation that bacteria have lived in salt crystals found near the WIPP site in New Mexico for more than 200 million years

Publication and/or submission of these findings are being recognized in internationally acclaimed journals such as the Proceedings of the National Academy of Sciences, Nature, Science, and Geology.

[read more...]

Annual Albuquerque Water Table Mapping
figure

Water-table mapping for the City of Albuquerque

[read more...]

Do Martian manganese oxide deposits reveal biosignatures?
figure

The recent discovery of manganese oxides on Mars suggests more oxygen was present in the Martian atmosphere the originally thought. A pilot project was recently funded by NASA to test the feasibility of discovering biosignatures in manganese deposits on Mars with payload instruments. There are two primary goals for this project; the first is to identify key chemical signatures and second to identify key mineralogical signatures in natural biologic and abiologic manganese materials. The pilot project will focus on three field sites in New Mexico that display features of formation that range from at or near the surface then extend to the deeper subsurface; essentially examining manganese deposits from surface, cave, geothermal springs, finally fossil hydrothermal environments. Should sufficient variation be noted during the pilot project, additional funding to the project will further characterize terrestrial occurrences for comparison to Mars by utilizing rover payload instruments

[read more...]

Lemitar Carbonatite: Exploring the Hidden World of Minerals: A Spectroscopic Adventure!
figure

At the forefront of cutting-edge research at New Mexico Tech, we have been utilizing Raman spectroscopy to unravel the mysteries locked within minerals. By harnessing the power of visible and ultraviolet lasers, we can unlock a plethora of information. So, you may be asking, what is Raman spectroscopy? In simple terms, it's a technique that uses laser light to interact with the atomic vibrations of a material, producing a unique "fingerprint" of its molecular composition. By analyzing the scattered light, we are able to identify and characterize minerals such as apatite, fluorite, and calcite.

[read more...]

Geologic Map Compilation of the East Mountains Area
figure

The East Mountains area, east of Albuquerque NM, is geologically complex. Nine STATEMAP quadrangles are being compiled together to create a geologic map of this important area.

[read more...]

Hydrogeology of La Cienega
figure

Building on its basin-scale hydrogeologic studies of the Española Basin (2003-2010), the Aquifer Mapping Program continues to monitor water levels in the area for a better understanding of the groundwater contribution to the wetlands around La Cienega. This work was completed with collaboration and support from NMED, NMOSE, Santa Fe County, and USF&WS and the Healy Foundation.

[read more...]

Critical Minerals in Mine Wastes

There are tens of thousands of inactive mine features in 274 mining districts in New Mexico (including coal, uranium, metals, and industrial minerals districts). However, many of these mines have not been inventoried or prioritized for reclamation or reprocessing. Many of these mines have existing mine wastes, generated during mineral production, which could have potential for critical minerals, especially since the actual mineral production was generally for precious and base metals and not critical minerals. The purpose of this project is to inventory, characterize and estimate the critical mineral endowment of mine wastes using USGS sampling procedures. This project is important to the state of New Mexico because critical mineral resources must be identified before land exchanges, withdrawals or other land use decisions are made by government officials. Future mining of mine wastes that potentially contain critical minerals will directly benefit the economy of New Mexico. Possible re-mining and/or reprocessing of mine wastes could clean up these sites and pay for reclamation. Furthermore, this project will include training of younger, professional geologists and students in economic and reclamation geology by the PIs.

[read more...]

Rare Earth Element Critical Minerals Studied in a Hydrothermal Diamond Anvil Cell
figure

The world is changing fast. Advanced electronics such as smartphones and tablets are a staple of everyday life. Critical to these devices are the rare earth elements (REE). Unfortunately, the supply of REE around the world is limited, thus research into how REE mineral deposits form is needed to help guide us to new sources of these metals. One aspect of REE geochemistry that is not fully understood is how REE are transported in the hydrothermal fluids that form these deposits. How easily these elements can be transported depends upon the composition of the fluid and what ligands (negatively charged molecules) the REE elements bond to in the fluid, which is called complexation.

[read more...]

Precursors to Supereruptions at the Valles Caldera, New Mexico
figure
Matt Zimmerer

Despite recognition as one the most iconic volcanoes on the planet, there is still much to learn about Valles caldera in north-central NM. A new collaboration between researchers at the Bureau and from UT Austin is seeking to understand the events leading up to supereruptions. In particular, the team is studying the Cerro Toledo Formation, a group of volcanic domes and related ashes that erupted between the large caldera forming events at 1.61 and 1.23 million-years-ago.

[read more...]