skip all navigation
skip banner links
skip primary navigation

Research — Brackish Water

Use criteria in the form below to search by subject, program, keyword, feature or region. Combining search criteria may provide few or no results.




   
There are 10 projects that match your criteria:
Overview of Fresh and Brackish Water Quality - San Marcial-Engle Basins
figure

The San Marcial and Engle Basins are axially-linked basins of the southern Rio Grande Rift system that connect the Socorro Basin with the Palomas Basin to the south (Connell et al., 2005). The Engle Basin is an east-tilted half graben containing ~2,000 feet of basin-fill material. Compared to other groundwater basins of the Rio Grande Rift, information specific to these two basins is limited. The compiled data contains only 32 data points for both basins. This very incomplete record indicates water in these basins is relatively fresh, with only four wells exceeding 1000 mg/l TDS.

[read more...]

Overview of Fresh and Brackish Water Quality - Mimbres Basin
figure

The Mimbres Basin is a structurally complex region in southwestern New Mexico, extending over an area of more than 5,000 square miles in parts of Grant, Luna, Doña Ana and Sierra Counties, and straddling the border with the Mexican Republic. The region has been subject to extensive geologic, geophysical, and hydrologic investigations over a period of almost a century, including Darton (1916), White (1931), Trauger (1972), Hanson et al. (1994), Hawley et al. (2000), and Kennedy et al. (2000). The Mimbres Basin is located at the intersection of the Basin and Range, southern Rio Grande Rift, and southern Transition Zone tectonic provinces (Mack, 2004). Dominant structural features in the region are northwest trending faults and folds associated with the Laramide orogeny, Tertiary magmatism and Quaternary tectonism (Finch et al., 2008). The greater Mimbres Basin is made up of an interconnected group of hydrologic sub-basins separated by fault-bounded uplifts, bounded to the east by the Goodsight Mountains, Sierra de las Uvas, and basalt flows and cinder cones of the West Potrillo Mountains. The Continental Divide defines the northern and western boundaries of the Mimbres Basin. The only major surface drainage in the basin is the Mimbres River (Hawley et al., 2000; Connell et al., 2005; Finch et al., 2008).

[read more...]

Overview of Fresh and Brackish Water Quality - San Luis Basin
figure

The San Luis Basin is the northernmost and largest basin of the Rio Grande Rift system in New Mexico. Most of the basin is located in Colorado, where it merges to the north with the Upper Arkansas River graben (Grauch and Keller, 2004). The basin is ~150 miles long and 55 miles wide, and has the general form of an east-dipping half graben. Basin-fill material is composed of Tertiary-Quaternary sediments of the Santa Fe Group and late Cenozoic volcanics (Kelley et al., 1976). The basin is bounded to the west by the Tusas and San Juan Mountains and to the east by the Sangre de Cristo Mountains and the Sangre de Cristo fault zone. The deepest part of the basin is found in the Taos graben, a narrow zone 6 to 18 miles wide adjacent to the Sangre de Cristo mountain front (Grauch and Keller, 2004). The southern part of the basin is occupied by the Taos Plateau, which is composed of Pliocene basalt flows that overlie Santa Fe Group basin fill. The southeastern margin of the basin is defined by the Embudo fault zone, which separates the east-tilted San Luis Basin from the west-tilted Española Basin to the south (Bauer and Kelson, 2004).

[read more...]

Hydrogeology of the Eastern Tularosa Basin
figure

Desalinated brackish water has been discussed in New Mexico as a possible alternative supply for drinking water. The communities of Tularosa and Alamogordo continue to explore using brackish water as a municipal water supply, and plans are quite advanced toward production. The communities in this region are actively seeking information to insure protection of fresh water supplies while implementing the use of alternate source water sources - brackish groundwater.

[read more...]

Overview of Fresh and Brackish Water Quality - Raton-Las Vegas Basins
figure

Northeastern New Mexico is a geologically diverse area that includes the upper Pecos and Canadian river valleys, the eastern margin of the Sangre de Cristo Mountains, and the Raton and Las Vegas Basins, two north-trending assymetric structural basins formed during the late Cretaceous-Paleogene Laramide orogeny. The Raton and Las Vegas Basins are separated by igneous intrusive rocks of the Cimarron Arch, near Cimarron, NM. The gently-dipping eastern margins of these basins are defined by the Sierra Grande Arch and the Raton-Clayton volcanic field (Kelley, 2015; Broadhead, 2015).

[read more...]

Overview of Fresh and Brackish Water Quality - High Plains Aquifer
figure

The High Plains aquifer is one of the largest freshwater aquifers in the world, covering more than 170,000 square miles and extending across parts of eight states from South Dakota to the Texas Panhandle (Sophocleous, 2010). The first regional investigation of the High Plains was conducted by the U.S. Geological Survey at the beginning of the 20th century (Johnson, 1901). Since then, several regional studies have been conducted (e.g., Gutentag et al., 1984; Weeks et al., 1988), and a great many more localized investigations (e.g., Joeckel et al., 2014; Chaudhuri and Ale, 2014), reflecting the societal and economic importance of this very extensive aquifer system.

[read more...]

Overview of Fresh and Brackish Water Quality - San Agustin Basin
figure

The San Agustin Basin is a closed intermontane basin on the northern edge of the Mogollon Plateau, and within the Datil-Mogollon volcanic field of southwestern New Mexico, extending across ~2,400 square miles in Catron and westernmost Socorro Counties. Myers et al. (1994) conducted an investigation of the hydrogeology of the basin, which is summarized here. The San Agustin Basin is bounded to the west and south by the Continental Divide, to the north by the Datil and Gallinas Mountains, and to the east by the San Mateo Mountains. The most recent structural activity in the region was late Tertiary Basin and Range faulting, which formed the San Agustin and Cuchillo Negro grabens. The Plains of San Agustin, which occupy the northeast-trending San Agustin graben, were covered by several large lakes during late Pleistocene time. Playas now occupy these former lake beds. There is no perennial streamflow in the basin.

[read more...]

Overview of Fresh and Brackish Water Quality - Mesilla Basin
figure

The Mesilla Basin is one of the southernmost basins of the Rio Grande Rift system, extending from south-central New Mexico across state and international boundaries into west Texas and northern Chihuahua, Mexico. The hydrology of the Mesilla Basin region has been subject to extensive investigations for over a century (e.g., Slichter, 1905; Theis, 1938; Sayre and Livingston, 1945; Conover, 1954; Leggat et al., 1962; Hawley et al., 1969; King et al., 1971; Wilson and White, 1984; Hawley and Lozinsky, 1992; Nickerson and Myers, 1993; Kennedy et al., 2000), as summarized by Hawley et al. (2001), who is paraphrased here. The eastern margin of the Mesilla Basin is defined by the Organ-Franklin-Juarez mountain chain, and the western margin by fault block and volcanic uplands of the East Potrillo Mountains and West Potrillo basalt field. The Robledo and Doña Ana Mountains define the northern end of the Mesilla Basin. The northeast end of the basin is transitional with the Jornada del Muerto Basin. The southern basin boundary with the Bolson de los Muertos in northern Chihuahua state is less well-defined. The entrenched Mesilla Valley of the Rio Grande crosses the eastern margin of the Mesilla Basin, where the cities of Las Cruces, NM, El Paso, Texas, and Juarez, Mexico exploit groundwater resources from the basin aquifers. Regional groundwater and surface water flow is to the southeast toward El Paso, through a gap separating the Franklin Mountains from Sierra Juarez to the south.

[read more...]

Overview of Fresh and Brackish Water Quality - EspaƱola Basin
figure

The Española Basin is one of the northernmost basins of the Rio Grande Rift in New Mexico, and has been subject to extensive investigations in the past several decades (e.g., Kelley, 1978; Manley, 1979; Cordell, 1979; Golombek, 1983; Biehler et al., 1991; Johnson et al., 2008; Grauch et al., 2009). Although the Española Basin has the general form of a west-dipping half-graben, it exhibits a high level of structural complexity, consisting of a series of narrow, deep axial troughs in an otherwise shallow basin (Ferguson et al., 1995). The basin is ~50 miles long and 18 to 40 miles wide, and is linked to the east-dipping Santo Domingo Basin to the south at the La Bajada constriction. The basin is connected to the north with the east-dipping San Luis basin at the Embudo constriction. The Santa Fe Embayment occupies the southeast corner of the basin.

[read more...]

Overview of Fresh and Brackish Water Quality - San Juan Basin
figure

The San Juan Basin is a large structural basin in northwestern New Mexico that formed during the late Cretaceous-Paleogene Laramide orogeny about 75 million years ago. The basin comprises all or parts of San Juan, McKinley, Rio Arriba, and Sandoval Counties, with a northern portion that extends into southwestern Colorado. The basin is bordered by basement-cored Laramide highlands, including the Nacimiento Uplift to the east, the Zuni Mountains to the south, the Defiance uplift to the west, and the San Juan Mountains in Colorado to the north. Laramide-age monoclines form the remaining boundaries of the basin (Kelley et al., 2014). The San Juan Basin region is a major producer of hydrocarbons, primarily natural gas, and extensive studies of the petroleum geology of the region have been conducted over the past several decades. Basin-wide hydrogeological assessments of the San Juan Basin were conducted by Stone et al. (1983), Craigg et al. (1989; 1990), Kaiser et al. (1994), Kernodle (1996), and Levings et al. (1996). Kelley et al. (2014) conducted a thorough hydrologic assessment of oil and gas resource development of the Mancos Shale in the San Juan Basin, which includes detailed discussions of groundwater salinity in the basin by depth and individual aquifers.

[read more...]