skip all navigation
skip banner links
skip primary navigation

Climate & Water Science Advisory Panel — References

This reference list will be continually updated as the advisory panel proceeds with this project. Some links will only be available with university credentials.

  1. Reclamation, SECURE Water Act - Section 9503(c) Reclamation Climate Change and Water, United States Congress (2011): https://www.usbr.gov/climate/secure/docs/2011secure/2011SECUREWaterReport.pdf.
  2. Reclamation, SECURE Water Act, 2016, Section 9503(c) Reclamation Climate Change and Water, Prepared for United States Congress (2016): https://www.usbr.gov/climate/secure/docs/2016secure/2016SECUREReport.pdf.
  3. Abatzoglou, J. T., 2013, Development of gridded surface meteorological data for ecological applications and modelling: International Journal of Climatology, v. 33, no. 1, p. 121-131, https://doi.org/10.1002/joc.3413.
  4. Abatzoglou, J. T., and Brown, T. J., 2012, A comparison of statistical downscaling methods suited for wildfire applications statistical downscaling for wildfire applications: International Journal of Climatology, v. 32, no. 5, p. 772-780, https://doi.org/10.1002/joc.2312.
  5. Abatzoglou, J. T., and Kolden, C. A., 2011, Climate change in Western US deserts: potential for increased wildfire and invasive annual grasses: Rangeland Ecology & Management, v. 64, no. 5, p. 471-478, https://www.proquest.com/docview/894513197?accountid=28254.
  6. Abatzoglou, J. T., and Williams, A. P., 2016, Impact of anthropogenic climate change on wildfire across Western US forests: Proc Natl Acad Sci U S A, v. 113, no. 42, p. 11770-11775, https://doi.org/10.1073/pnas.1607171113.
  7. Abbot, T. H., Cronin, T. W., and Beucler, T., 2020, Convective dynamics and the response of precipitation extremes to warming in radiative-convective equilibrium: Journal of the Atmospheric Sciences, v. 77, no. 5, p. 1637-1660, https://doi.org/10.1175/JAS-D-19-0197.1.
  8. Aby, S. B., 2017, Date of arroyo cutting in the American Southwest and the influence of human activities: Anthropocene, v. 18, p. 76-88.
  9. Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., Troch, P. A., and Huxman, T. E., 2009, Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought: Proceedings of the National Academy of Sciences USA, v. 106, no. 17, p. 7063-7066, https://doi.org/10.1073/pnas.0901438106.
  10. Aldred, J. L., 2020, Post-last glacial maximum landscape evolution of the Upper Conejos River Basin, San Juan Mountains, CO, USA, Ph.D. dissertation: The University of North Carolina at Charlotte, 152 p.
  11. Allen, C. D., 1989, Changes in the landscape of the Jemez Mountains, New Mexico, Ph.D. dissertation: University of California, 346 p.
  12. Allen, C. D., 2007, Interactions across spatial scales among forest dieback, fire, and erosion in Northern New Mexico landscapes: Ecosystems, v. 10, no. 5, p. 797-808, https://doi.org/10.1007/s10021-007-9057-4.
  13. Allen, C. D., 2014, Forest ecosystem reorganization underway in the Southwestern US: A preview of widespread forest changes in the Anthropocene, Proceedings RMRS-P-71, 103-122 p., http://pubs.er.usgs.gov/publication/70156788.
  14. Allen, C. D., Anderson, R. S., Jass, R. B., Toney, J. L., and Baisan, C. H., 2008, Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites: International Journal of Wildland Fire, v. 17, no. 1, p. 115-130, https://doi.org/10.1071/WF07165.
  15. Allen, C. D., and Breshears, D. D., 1998, Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation: Proceedings of the National Academy of Sciences, v. 95, no. 25, p. 14839, http://www.pnas.org/content/95/25/14839.abstract.
  16. Allen, C. D., Breshears, D. D., and McDowell, N. G., 2015, On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene: Ecosphere, v. 6, no. 8, p. 1-55, https://doi.org/10.1890/ES15-00203.1.
  17. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., et al., 2010, A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests: Forest Ecology and Management, v. 259, no. 4, p. 660-684, https://doi.org/10.1016/j.foreco.2009.09.001.
  18. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M., 1998, Crop evapotranspiration: Food and Agriculture Organization, FAO Irrigation and Drainage Paper No. 56, 174 p., http://www.fao.org/3/x0490e/x0490e00.htm.
  19. AMAFCA, 2018, Middle Rio Grande watershed based municipal separate storm sewer system permit: Stormwater Management Program for the Albuquerque Metropolitan Arroyo Flood Control Authority, NPDES Permit, No. NMR04A000, 331 p., https://www.env.nm.gov/wp-content/uploads/sites/10/2019/10/NMR04A000-AlbuquerqueMS4.pdf.
  20. Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Hood, S., Lichstein, J. W., Macalady, A. K., McDowell, N., et al., 2015, Tree mortality from drought, insects, and their interactions in a changing climate: New Phytologist, v. 208, no. 3, p. 674-683, https://doi.org/10.1111/nph.13477.
  21. Anderson, H. W., Hoover, M. D., and Reinhart, K. G., 1976, Forests and water: Effects of forest management on floods, sedimentation, and water supply: U.S. Department of Agriculture, General Technical Report, 18, https://www.fs.usda.gov/treesearch/pubs/24048.
  22. Anderson, R. S., Allen, C. D., Toney, J. L., Jass, R. B., and Bair, A. N., 2008, Holocene vegetation and fire regimes in subalpine and mixed conifer forests, Southern Rocky Mountains, USA: International Journal of Wildland Fire, v. 17, no. 1, p. 96-114, https://doi.org/10.1071/WF07028.
  23. Anderson, R. S., Jass, R. B., Toney, J. L., Allen, C. D., Cisneros-Dozal, L. M., Hess, M., Heikoop, J., and Fessenden, J., 2008, Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change: Quaternary Research, v. 69, no. 2, p. 263-275, https://doi.org/10.1016/j.yqres.2007.12.002.
  24. Anderson, T. R., and Slotkin, T. A., 1975, Maturation of the adrenal medulla--IV. Effects of morphine: Biochemical Pharmacology, v. 24, no. 16, p. 1469-1474, https://doi.org/10.1016/0006-2952(75)90020-9.
  25. Andrews, C., Bradford, J., Norris, J., Gremer, J., Duniway, M., Munson, S., Thomas, L., and Swan, M., 2020, Describing trends in past and future soil moisture in the Mesa-Top Pinyon-Juniper woodland ecosystem in Bandelier National Monument: National Park Service, U.S. Department of the Interior, Natural Resource Stewardship and Science, Natural Resource Report 2114, https://irma.nps.gov/DataStore/DownloadFile/643271.
  26. Antinao, J. L., and McDonald, E., 2013, A reduced relevance of vegetation change for alluvial aggradation in arid zones: Geology, v. 41, no. 1, p. 11-14, https://doi.org/10.1130/G33623.1.
  27. Archer, S. R., Andersen, E. M., Predick, K. I., Schwinning, S., Steidl, R. J., and Woods, S. R., 2017, Woody plant encroachment: Causes and consequences, Rangeland Systems : Processes, Management and Challenges, Cham : Springer International Publishing : Springer, p. 25-84, https://doi.org/10.1007/978-3-319-46709-2_2.
  28. Arismendi, I., Safeeq, M., Dunham, J. B., and Johnson, S. L., 2014, Can air temperature be used to project influences of climate change on stream temperature?: Environmental Research Letters, v. 9, p. 08401, https://doi.org/10.1007/s10584-011-0326-z.
  29. AWA, 2018, Colorado - New Mexico regional extreme precipitation study: Summary report volume II: Deterministic regional probable maximum precipitation estimation: Applied Weather Associates, Colorado - New Mexico regional extreme precipitation study: Summary report, 186 p., http://hermes.cde.state.co.us/drupal/islandora/object/co:33515/datastream/OBJ/view.
  30. Bailey, S. N., Elliott, G. P., and Schliep, E. M., 2021, Seasonal temperature-moisture interactions limit seedling establishment at upper treeline in the Southern Rockies: Ecosphere, v. 12, no. 6, https://doi.org/10.1002/ecs2.3568.
  31. Bales, R. C., and Dietrich, W. E., 2020, Linking critical zone water storage and ecosystems, Science News by AGU, Volume 101, https://doi.org/10.1029/2020EO150459.
  32. Bales, R. C., Goulden, M. L., Hunsaker, C. T., Conklin, M. H., Hartsough, P. C., O’Geen, A. T., Hopmans, J. W., and Safeeq, M., 2018, Mechanisms controlling the impact of multi-year drought on mountain hydrology: Scientific Reports, v. 8, no. 1, p. 690, https://doi.org/10.1038/s41598-017-19007-0.
  33. Ball, G., Regier, P., Gonzalez-Pinzon, R., Reale, J., and Van Horn, D., 2021, Wildfires increasingly impact Western US fluvial networks: Nature Communications, v. 12, no. 2484, https://doi.org/10.1038/s41467-021-22747-3.
  34. Balling, R. C., and Wells, S. G., 1990, Historical rainfall patterns and arroyo activity within the Zuni River drainage basin, New Mexico: Annals of the Association of American Geographers, v. 80, no. 4, p. 603-617, https://www.jstor.org/stable/2563372?seq=1#metadata_info_tab_contents.
  35. Bart, R. R., Ray, R. L., Conklin, M. H., Safeeq, M., Saksa, P. C., Tague, C. L., and Bales, R. C., 2021, Assessing the effects of forest biomass reductions on forest health and streamflow: Hydrological Processes, v. 35, no. 3, p. e14114, https://doi.org/10.1002/hyp.14114.
  36. Belmonte, A., Sankey, T., Biederman, J., Bradford, J., Goetz, S., and Kolb, T., 2021, Uav-based estimate of snow cover dynamics: Optimizing semi-arid forest structure for snow persistence: Remote Sensing, v. 13, no. 5, https://doi.org/10.3390/rs13051036.
  37. Benda, L., Miller, D., Bigelow, P., and Andras, K., 2003, Effects of post-wildfire erosion on channel environments, Boise River, Idaho: Forest Ecology and Management, v. 178, no. 1-2, p. 105–119, https://doi.org/10.1016/S0378-1127(03)00056-2.
  38. Bennett, K. E., Miller, G., Talsma, C., Jonko, A., Bruggeman, A., Atchley, A., Lavadie-Bulnes, A., Kwicklis, E., and Middleton, R., 2020, Future water resource shifts in the high desert Southwest of Northern New Mexico, USA: Journal of Hydrology: Regional Studies, v. 28, p. 19, https://doi.org/10.1016/j.ejrh.2020.100678.
  39. Bennett, K. E., Taisma, C., and Boero, R., 2021, Concurrent changes in extreme hydroclimate events in the Colorado River Basin: Water, v. 13, no. 7, p. 19, https://doi.org/10.3390/w13070978.
  40. Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J. J., Gross, N., Saiz, H., Maire, V., Lehmann, A., et al., 2020, Global ecosystem thresholds driven by aridity: Science, v. 367, no. 6479, p. 787-790, https://doi.org/10.1126/science.aay5958.
  41. Bestelmeyer, B. T., Peters, D. P. C., Archer, S. R., Browning, D. M., Okin, G. S., Schooley, R. L., and Webb, N. P., 2018, The grassland–shrubland regime shift in the Southwestern United States: Misconceptions and their implications for management: BioScience, v. 68, no. 9, p. 678-690, https://doi.org/10.1093/biosci/biy065.
  42. Betancourt, J. L., Van Devender, T. R., Martin, P. S., Vaughan, T. A., Finley, R. B. J., Dial, K. P., Czaplewski, N. J., Cole, K. L., Croft, L. K., Spaulding, W. G., et al., 1990, Packrat middens : The last 40,000 years of biotic change, Tucson, Arizona, University of Arizona Press, https://nmt.on.worldcat.org/v2/oclc/942788944.
  43. Biederman, J. A., Somor, A. J., Harpold, A. A., Gutmann, E. D., Breshears, D. D., Troch, P. A., Gochis, D. J., Scott, R. L., Meddens, A. J. H., and Brooks, P. D., 2015, Recent tree die-off has little effect on streamflow in contrast to expected increases from historical studies: Water Resources Research, v. 51, no. 12, p. 9775-9789, https://doi.org/10.1002/2015WR017401.
  44. Bierman, P., and Montgomery, D., 2019, Key concepts in geomorphology, New York, NY, W.H. Freeman and Company, 592 p, https://nmt.on.worldcat.org/v2/oclc/1236202116.
  45. Birkeland, P. W., 1999, Soils and geomorphology, Oxford University Press, 430 p, https://doi.org/10.1002/esp.242.
  46. Birkeland, P. W., Shroba, R. R., Burns, S. F., Price, A. B., and Tonkin, P. J., 2003, Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado: Geomorphology, v. 55, no. 1, p. 329-344, https://doi.org/10.1016/S0169-555X(03)00148-X.
  47. Bjarke, N., 2019, Observed and projected snowmelt runoff in the upper Rio Grande in a changing climate, master thesis: University of New Mexico, 38 p, https://digitalrepository.unm.edu/eps_etds/260.
  48. Blair, A., Lovelace, S., Sanger, D., Holland, A. F., Vandiver, L., and White, S., 2014, Exploring impacts of development and climate change on stormwater runoff: Hydrological Processes, v. 28, no. 5, p. 2844-2854, https://doi.org/10.1002/hyp.9840.
  49. Blair, A., and Sanger, D., 2016, Climate change and watershed hydrology - Heavier precipitation influence on stormwater runoff: Geosciences, v. 6, no. 3, p. 12 https://doi.org/10.3390/geosciences6030034.
  50. Bloomfield, J. P., Marchant, B. P., and McKenzie, A. A., 2019, Changes in groundwater drought associated with anthropogenic warming: Hydrology and Earth System Sciences, v. 23, p. 1393-1408, https://doi.org/10.5194/hess-23-1393-2019.
  51. Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., Cerdà, A., and Mataix-Solera, J., 2014, Wildland fire ash: Production, composition and eco-hydro-geomorphic effects: Earth-Science Reviews, v. 130, p. 103–127, https://doi.org/10.1016/j.earscirev.2013.12.007.
  52. Bogle, R., Redsteer, M. H., and Vogel, J. M., 2015, Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, Southwestern United States: Geomorphology, v. 228, p. 41-51, https://doi.org/10.1016/j.geomorph.2014.08.023.
  53. Boisvenue, C., and Running, S. W., 2006, Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century: Global Change Biology, v. 12, no. 5, p. 862-882, https://doi.org/10.1111/j.1365-2486.2006.01134.x.
  54. Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G., 1997, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates: Science, v. 278, no. 5341, p. 1257, https://doi.org/10.1126/science.278.5341.1257.
  55. Borland, J. P., 1970, A proposed streamflow-data program for New Mexico, Open-File Report 70-35, https://doi.org/10.3133/ofr7035.
  56. Borsa, A. A., Agnew, D. C., and Cayan, D. R., 2014, Ongoing drought-induced uplift in the Western United States: Science, v. 345, no. 6204, p. 1587-1590, https://doi.org/10.1126/science.1260279.
  57. Bowman, D. M. J. S., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, G. R., and Flannigan, M., 2020, Vegetation fires in the Anthropocene: Nature Reviews Earth & Environment, v. 1, no. 10, p. 500-515, https://doi.org/10.1038/s43017-020-0085-3.
  58. Bradford, J. B., Betancourt, J. L., Butterfield, B. J., Munson, S. M., and Wood, T. E., 2018, Anticipatory natural resource science and management for a changing future: Frontiers in Ecology and the Environment, v. 16, no. 5, p. 295-303, https://doi.org/10.1002/fee.1806.
  59. Bradford, J. B., Schlaepfer, D. R., Lauenroth, W. K., and Palmquist, K. A., 2020, Robust ecological drought projections for drylands in the 21st century: Global Change Biology, v. 26, no. 7, p. 3906-3919, https://doi.org/10.1111/gcb.15075.
  60. Breecker, D. O., Sharp, Z. D., and McFadden, L. D., 2009, Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from Central New Mexico, USA: Geological Society of America Bulletin, v. 121, no. 3-4, p. 630-640, https://doi.org/10.1130/B26413.1.
  61. Breshears, D. D., Adams, H. D., Eamus, D., McDowell, N. G., Law, D. J., Will, R. E., Williams, A. P., and Zou, C. B., 2013, The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off: Frontiers in Plant Science, v. 4, https://doi.org/10.3389/fpls.2013.00266.
  62. Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., et al., 2005, Regional vegetation die-off in response to global-change-type drought: Proceedings of the National Academy of Science USA, v. 102, no. 42, p. 15144-15148, https://doi.org/10.1073/pnas.0505734102.
  63. Breshears, D. D., Fontaine, J. B., Ruthrof, K. X., Field, J. P., Feng, X., Burger, J. R., Law, D. J., Kala, J., and Hardy, G., 2021, Underappreciated plant vulnerabilities to heat waves: New Phytologist, v. 231, no. 1, p. 32-39, https://doi.org/10.1111/nph.17348.
  64. Breshears, D. D., Whicker, J. J., Zou, C. B., Field, J. P., and Allen, C. D., 2009, A conceptual framework for dryland aeolian sediment transport along the grassland–forest continuum: Effects of woody plant canopy cover and disturbance: Geomorphology, v. 105, no. 1, p. 28-38, https://doi.org/10.1016/j.geomorph.2007.12.018.
  65. Breugem, A. J., Wesseling, J. G., Oostindie, K., and Ritsema, C. J., 2020, Meteorological aspects of heavy precipitation in relation to floods - An overview: Earth-Science Reviews, v. 204, no. 103171, p. 46, https://doi.org/10.1016/j.earscirev.2020.103171.
  66. Broadhead, R. F., Speer, S. W., Kottlowski, F. E., MacMillan, J. R., Cappa, J. A., Scott, G. L., Brannigan, J. P., and Mitchell, S., 1983, Guidebook for field trip to the Abo Red Beds (Permian), Roswell Geological Society Field Conference, Volume 1962: New Mexico, Roswell Geological Society Bureau of Mines and Mineral Resources, Guidebook, p. 73, https://geoinfo.nmt.edu/publications/guides/home.cfml.
  67. Brown, V. M., Keim, B. D., and Black, A. W., 2019, Climatology and trends in hourly precipitation for the Southeast United States: Journal of Hydrometeorology, v. 20, no. 8, p. 1737-1755, https://doi.org/10.1175/JHM-D-19-0004.1.
  68. Broxton, P. D., van Leeuwen, W. J. D., and Biederman, J. A., 2020, Forest cover and topography regulate the thin, ephemeral snowpacks of the semiarid Southwest United States: Ecohydrology, v. 13, no. 4, p. e2202, https://doi.org/10.1002/eco.2202.
  69. Brunelle, A., Minckley, T. A., Delgadillo, J., and Blissett, S., 2014, A long-term perspective on woody plant encroachment in the desert Southwest, New Mexico, USA: Journal of Vegetation Science, v. 25, no. 3, p. 829-838, https://doi.org/10.1111/jvs.12125.
  70. Brusca, R. C., Wiens, J. F., Meyer, W. M., Eble, J., Franklin, K., Overpeck, J. T., and Moore, W., 2013, Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited: Ecol Evol, v. 3, no. 10, p. 3307-3319, https://doi.org/10.1002/ece3.720.
  71. Bryan, K., 1925, Date of channel trenching (arroyo cutting) in the arid Southwest: Science, v. 62, no. 1607, p. 338–344, https://doi.org/10.1126/science.62.1607.338.
  72. Bull, W. B., 1991, Geomorphic responses to climatic change, New York, Oxford University Press, 326 p, https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=90032977&searchType=1&permalink=y.
  73. Bull, W. B., 1997, Discontinuous ephemeral streams: Geomorphology, v. 19, no. 3-4, p. 227-276, https://doi.org/10.1016/S0169-555X(97)00016-0.
  74. Burnett, B. N., Meyer, G. A., and McFadden, L. D., 2008, Aspect-related microclimatic influences on slope forms and processes, Northeastern Arizona: Journal of Geophysical Research: Earth Surface, v. 113, no. F3, https://doi.org/10.1029/2007jf000789.
  75. Caldwell, C. A., Canavan, C. M., and Bloom, N. S., 2000, Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir: Science of the Total Environment, v. 260, no. 1-3, p. 125-133, https://doi.org/10.1016/S0048-9697(00)00554-4.
  76. Campbell, R. E., Baker, J., Ffolliott, P. F., Larson, F. R., and Avery, C. C., 1977, Wildfire effects on a Ponderosa Pine ecosystem: An Arizona case study: US Department of Agriculture, USDA Forest Service Research Papers, RM-191, 191, 12 p., https://www.fs.fed.us/rm/pubs_rm/rm_rp191.pdf.
  77. Cannon, S., Gartner, J., Wilson, R., Bowers, J., and Laber, J., 2008, Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Basins in Southwestern Colorado and Southern California: Geomorphology, v. 96, p. 250-269, https://doi.org/10.1016/j.geomorph.2007.03.019.
  78. Cannon, S. H., 2001, Debris-flow generation from recently burned watersheds: Environmental & Engineering Geoscience, v. 7, no. 4, p. 321-341, http://pubs.er.usgs.gov/publication/70022812.
  79. Cannon, S. H., and Gartner, J. E., 2005, Wildfire-related debris flow from a hazards perspective, Debris-flow Hazards and Related Phenomena, Berlin, Heidelberg : Springer Berlin Heidelberg, p. 363-385, https://doi.org/10.1007/3-540-27129-5_15.
  80. Cannon, S. H., and Reneau, S. L., 2000, Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico: Earth Surface Processes and Landforms, v. 25, no. 10, p. 1103-1121, https://doi.org/10.1002/1096-9837(200009)25:10<1103::AID-ESP120>3.0.CO;2-H.
  81. Capesius, J. P., and Stephens, V. C., 2009, Regional regression equations for estimation of natural streamflow statistics in Colorado, Scientific Investigations Report 2009-5136, 53 p., https://pubs.usgs.gov/sir/2009/5136/.
  82. Chavarria, S. B., and Gutzler, D. S., 2018, Observed changes in climate and streamflow in the upper Rio Grande Basin: Journal of the American Water Resources Association, v. 54, no. 3, p. 644-659, https://doi.org/10.1111/1752-1688.12640.
  83. Chermak, J., Gutzler, D. S., Johnson, P., King, J. P., Reynis, L., Aldrich, G., and O’Donnell, M., 2015, New Mexico universities working group on water supply vulnerabilities: Final report to the interim committee on water and natural resources New Mexico universities working group on water supply vulnerabilities, Open-file Report 577, https://geoinfo.nmt.edu/publications/openfile/downloads/500-599/577/OFR577.pdf.
  84. Chow, A. T.-S., Karanfil, T., and Dahlgren, R. A., 2021, Wildfires are threatening municipal water supplies, Science News by AGU, Volume 102, https://doi.org/10.1029/2021EO161894.
  85. Chow, Y. W., Pietranico, R., and Mukerji, A., 1975, Studies of oxygen binding energy to hemoglobin molecule: Biochemical and Biophysical Research Communications, v. 66, no. 4, p. 1424-1431, https://doi.org/10.1016/0006-291x(75)90518-5.
  86. Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., et al., 2015, Improving the representation of hydrologic processes in earth system models: Water Resources Research, v. 51, no. 8, p. 5929-5956, https://doi.org/10.1002/2015WR017096.
  87. Clary, W. P., and Kruse, W. H., 2004, Livestock grazing in riparian areas: Environmental impacts, management practices and management implications, in M.B. Baker, J., ed., Riparian areas of the southwestern United States: Hydrology, ecology and management., Lewis Publishers, p. 239–258.
  88. CLV, 2021, City of Las Vegas drought contingency and emergency response plan draft 1.1, https://1library.net/document/qv62e81y-city-vegas-drought-contingency-emergency-response-plan-draft.html.
  89. Coffey, R., Jen Stamp, J. P., Hamilton, A., and Johnson, T., 2019, A review of water quality responses to air temperature and precipitation changes 2: Nutrients, algal blooms, sediment, pathogens: Journal of the American Water Resources Association, v. 55, no. 4, p. 844-868, https://doi.org/10.1111/1752-1688.12711.
  90. Collins, S. L., Belnap, J., Grimm, N. B., Rudgers, J. A., Dahm, C. N., D'Odorico, P., Litvak, M., Natvig, D. O., Peters, D. C., Pockman, W. T., et al., 2014, A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems: Annual Review of Ecology, Evolution, and Systematics, v. 45, no. 1, p. 397-419, https://doi.org/10.1146/annurev-ecolsys-120213-091650.
  91. Condon, L. E., Atchley, A. L., and Maxwell, R. M., 2020, Evapotranspiration depletes groundwater under warming over the contiguous United States: Nature Communications, v. 11, no. 1, p. 873, https://doi.org/10.1038/s41467-020-14688-0.
  92. CO-NM-REPS-Project-Team, 2018, Colorado-New Mexico regional extreme precipitation study Colorado Division of Water Resources, Dam Safety Branch; New Mexico Office of the State Engineer, Dam Safety Bureau; Applied Weather Associates; MetStat, Inc; MGS Engineering Consultants, Inc.; Applied Climate Services; NOAA Earth Systems Research Laboratory; NOAA Earth Systems Research Laboratory, Physical Sciences Division; Western Water Assessment, CIRES, University of Colorado Boulder; CIRES/NOAA GSD; The REPS Project Team, vols. 1-8, https://spl.cde.state.co.us/artemis/nrmonos/nr5102p412018internet/.
  93. Connell, S. D., and Love, D. W., 2001, Stratigraphy of middle and upper Pleistocene fluvial deposits of the Rio Grande (post-Santa Fe Group) and the geomorphic development of the Rio Grande Valley, Northern Albuquerque Basin, central New Mexico NMBGMR, Open-file report 454:C1 https://geoinfo.nmt.edu/publications/openfile/downloads/400-499/454/papers/OFR454D_PDF/G_OFR454D_Connell_QuaternaryTerrace.pdf.
  94. Cook, B. I., Ault, T. R., and Smerdon, J. E., 2015, Unprecedented 21st century drought risk in the American Southwest and Central Plains: Science Advances, v. 1, no. 1, p. e1400082, https://doi.org/10.1126/sciadv.1400082.
  95. Cook, B. I., and Seager, R., 2013, The response of the North American Monsoon to increased greenhouse gas forcing: Journal of Geophysical Research: Atmospheres, v. 118, no. 4, p. 1690-1699, https://doi.org/10.1002/jgrd.50111.
  96. Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W., 2007, North American drought: Reconstructions, causes, and consequences: Earth-Science Reviews, v. 81, no. 1-2, p. 93-134, https://doi.org/10.1016/j.earscirev.2006.12.002.
  97. Cook, L. M., McGinnis, S., and Samaras, C., 2020, The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change: Climatic Change, v. 159, no. 2, p. 289-308, https://doi.org/10.1007/s10584-019-02649-6.
  98. Cook, R., and Reeves, R., 1976, Climatic causes and biotic consequences of recent desertification in the American Southwest, Oxford, Clarendon Press.
  99. Coop, J. D., Parks, S. A., Stevens-Rumann, C. S., Crausbay, S. D., Higuera, P. E., Hurteau, M. D., Tepley, A., Whitman, E., Assal, T., Collins, B. M., et al., 2020, Wildfire-driven forest conversion in Western North American landscapes: Bioscience, v. 70, no. 8, p. 659-673, https://doi.org/10.1093/biosci/biaa061.
  100. Crosbie, R. S., Scanlon, B. R., Mpelasoka, F. S., Reedy, R. C., Gates, J. B., and Zhang, L., 2013, Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA: Water Resources Research, v. 49, no. 7, p. 3936-3951, https://doi.org/10.1002/wrcr.20292.
  101. CRS, 2019, Dam safety overview and the federal role Congressional Research Service, CRS Report, R45981, 42 p., https://crsreports.congress.gov/product/pdf/R/R45981.
  102. Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., et al., 2003, The common land model: Bulletin of the American Meteorological Society, v. 84, no. 8, p. 1013-1024, https://doi.org/10.1175/BAMS-84-8-1013.
  103. Davenport, D., Breshears, D., Wilcox, B., and Allen, C., 1998, Viewpoint: Sustainability of Pinon-Juniper Ecosystems: A unifying perspective of soil erosion thresholds: Journal of Range Management, v. 51, p. 231–240, https://doi.org/10.2307/4003212.
  104. Davenport, D. W., Breshears, D. D., Wilcox, B. P., and Allen, C. D., 1998, Sustainability of pinon-juniper ecosystems--A unifying perspective of soil erosion thresholds: Rangeland Ecology & Management/Journal of Range Management Archives, v. 51, no. 2, p. 231-240, https://doi.org/10.2307/4003212.
  105. Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., Parks, S. A., Sala, A., and Maneta, M. P., 2019, Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration: Proceedings of the National Academy of Sciences, v. 116, no. 13, p. 6193-6198, https://doi.org/10.1073/pnas.1815107116.
  106. Davis, K. T., Higuera, P. E., Dobrowski, S. Z., Parks, S. A., Abatzoglou, J. T., Rother, M. T., and Veblen, T. T., 2020, Fire-catalyzed vegetation shifts in ponderosa pine and douglas-fir forests of the Western United States: Environmental Research Letters, v. 15, no. 10, p. 1040b1048, https://doi.org/10.1088/1748-9326/abb9df.
  107. Davis, S., 2013, NM farmers selling water to oil, gas developers, Lubbock Avalanche-Journal, https://www.lubbockonline.com/article/20130701/NEWS/307019873.
  108. De Kauwe, M. G., Medlyn, B. E., and Tissue, D. T., 2021, To what extent can rising [CO2] ameliorate plant drought stress?: New Phytologist, v. 231, no. 6, p. 2118–2124, https://doi.org/10.1111/nph.17540.
  109. DeBano, L. F., 1981, Water repellent soils: A state-of-the-art: Pacific Southwest Forest and Range Experiment Station, General Technical Report, 46 https://doi.org/10.2737/PSW-GTR-46.
  110. deBuys, W., 2015, Enchantment and exploitation : the life and hard times of a New Mexico mountain range: Albuquerque, University of New Mexico Press, http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=982496.
  111. deBuys, W., and Allen, C. D., 2015, A historical chronology of events and observations for the pecos wilderness in the territorial period: New Mexico Historical Review, v. 90, no. 4, p. 415-487, https://digitalrepository.unm.edu/nmhr/vol90/iss4/3.
  112. Deng, Y., Wang, S., Bai, X., Luo, G., Wu, L., Cao, Y., Li, H., Li, C., Yang, Y., Hu, Z., et al., 2020, Variation trend of global soil moisture and its cause analysis: Ecological Indicators, v. 110, p. 10, https://doi.org/10.1016/j.ecolind.2019.105939.
  113. Dick-Peddie, W. A., Moir, W. H., and Spellenberg, R., 2000, New Mexico vegetation : past, present, and future, Albuquerque NM, University of New Mexico Press, https://www.worldcat.org/title/new-mexico-vegetation-past-present-and-future/oclc/25281325.
  114. Döll, P., 2009, Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment: Environmental Research Letters, v. 4, no. 3, p. 13, https://doi.org/10.1088/1748-9326/4/3/035006.
  115. Döll, P., and Fiedler, K., 2008, Global-scale modeling of groundwater recharge: Hydrology and Earth System Sciences, v. 12, p. 863-885, https://doi.org/10.5194/hess-12-863-2008.
  116. Döll, P., Kaspar, F., and Lehner, B., 2003, A global hydrological model for deriving water availability indicators: Model tuning and validation: Journal of Hydrology, v. 270, p. 105-134, https://doi.org/10.1016/S0022-1694(02)00283-4.
  117. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., and Maher, N., 2016, More extreme precipitation in the world’s dry and wet regions: Nature Climate Change, v. 6, no. 5, p. 508-513, https://doi.org/10.1038/nclimate2941.
  118. Douville, H., and Plazzotta, M., 2017, Midlatitude summer drying: An underestimated threat in CMIP5 models?: Geophysical Research Letters, v. 44, no. 19, p. 9967-9975, https://doi.org/10.1002/2017GL075353.
  119. Duane, A., Castellnou, M., and Brotons, L., 2021, Towards a comprehensive look at global drivers of novel extreme wildfire events: Climatic Change, v. 165, no. 3, p. 43, https://doi.org/10.1007/s10584-021-03066-4.
  120. Duffy, K. A., Schwalm, C. R., Arcus, V. L., Koch, G. W., Liang, L. L., and Schipper, L. A., 2021, How close are we to the temperature tipping point of the terrestrial biosphere?: Science Advances, v. 7, no. 3, p. 1052, https://doi.org/10.1126/sciadv.aay1052.
  121. Duman, T., Huang, C.-W., and Litvak, M. E., 2021, Recent land cover changes in the Southwestern US lead to an increase in surface temperature: Agricultural and Forest Meteorology, v. 297, https://doi.org/10.1016/j.agrformet.2020.108246.
  122. Duniway, M. C., Pfennigwerth, A. A., Fick, S. E., Nauman, T. W., Belnap, J., and Barger, N. N., 2019, Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world: Ecosphere, v. 10, no. 3, p. e02650, https://doi.org/10.1002/ecs2.2650.
  123. Earman, S., and Dettinger, M., 2011, Potential impacts of climate change on groundwater resources – A global review: Journal of Water and Climate Change, v. 2, no. 4, p. 213-229, https://doi.org/10.2166/wcc.2011.034.
  124. Ebel, B. A., and Moody, J. A., 2013, Rethinking infiltration in wildfire-affected soils: Hydrological Processes, v. 27, no. 10, p. 1510–1514, https://doi.org/10.1002/hyp.9696.
  125. Ebel, B. A., and Moody, J. A., 2017, Synthesis of soil‐hydraulic properties and infiltration timescales in wildfire‐affected soils: Hydrological Processes, v. 31, no. 2, p. 324–340, https://doi.org/10.1002/hyp.10998.
  126. Ebel, B. A., Moody, J. A., and Martin, D. A., 2012, Hydrologic conditions controlling runoff generation immediately after wildfire: Water Resources Research, v. 48, no. 3, https://doi.org/10.1029/2011WR011470.
  127. Ebel, B. A., Moody, J. A., and Martin, D. A., 2012, Hydrologic conditions controlling runoff generation immediately after wildfire: HYDROLOGIC CONDITIONS CONTROLLING RUNOFF AFTER WILDFIRE: Water Resources Research, v. 48, no. 3, https://doi.org/10.1029/2011WR011470.
  128. Eberly, P., McFadden, L., and Watt, P., 1996, Eolian dust as a factor in soil development on the Pajarito Plateau, Northern New Mexico, in Goff, F., Kues, B. S., Rogers, M. A., McFadden, L. S., and Gardner, J. N., eds., New Mexico Geological Society 47th Annual Fall Field Conference in Jemez Mountains Region, Guidebook, p. 383-389, https://nmgs.nmt.edu/publications/guidebooks/downloads/47/47_p0383_p0389.pdf.
  129. Egli, M., Dahms, D., and Norton, K., 2014, Soil formation rates on silicate parent material in alpine environments: Different approaches–different results?: Geoderma, v. 213, p. 320-333, https://doi.org/10.1016/j.geoderma.2013.08.016.
  130. Elias, E. H., Rango, A., Steele, C. M., Mejia, J. F., and Smith, R., 2015, Assessing climate change impacts on water availability of snowmelt-dominated basins of the Upper Rio Grande Basin: Journal of Hydrology: Regional Studies, v. 3, p. 525-546, https://doi.org/10.1016/j.ejrh.2015.04.004.
  131. Elliott, G. P., Bailey, S. N., and Cardinal, S. J., 2021, Hotter drought as a disturbance at upper treeline in the Southern Rocky Mountains: Annals of the American Association of Geographers, v. 111, no. 3, p. 756-770, https://doi.org/10.1080/24694452.2020.1805292.
  132. Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., et al., 2014, Constraints and potentials of future irrigation water availability on agricultural production under climate change: Proceedings of the National Academy of Sciences, v. 111, no. 9, p. 3239-3244, https://doi.org/10.1073/pnas.1222474110.
  133. Elliott, J. G., Gellis, A. C., and Aby, S. B., 1999, Evolution of arroyos: Incised channels of the southwestern United States, in Darby, S. E., and Simon, A., eds., Incised River Channels: Processes, Forms,
  134. Engineering and Management: Chichester, United Kingdom, John Wiley & Sons, p. 153-185.
  135. Ellwein, A. L., McFadden, L. D., McAuliffe, J. A., and Mahan, S. A., 2018, Late Quaternary soil development enhances aeolian landform stability, Moenkopi Plateau, Southern Colorado Plateau, USA: Geosciences, v. 8, no. 5, p. 146, https://doi.org/10.3390/geosciences8050146.
  136. Emori, S., and Brown, S. J., 2005, Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate: Geophysical Research Letters, v. 32, no. 17, https://doi.org/10.1029/2005gl023272.
  137. Climate impacts on water quality: EPA.gov: https://www.epa.gov/arc-x/climate-impacts-water-quality. (accessed May 2021).
  138. EPA actions on tribal water quality standards and contacts: EPA.gov: https://www.epa.gov/wqs-tech/epa-actions-tribal-water-quality-standards-and-contacts. (accessed May 2021).
  139. Learn about polychlorinated biphenyls (PCBs): Epa.gov: https://www.epa.gov/pcbs/learn-about-polychlorinated-biphenyls-pcbs. (accessed May 2021).
  140. National summary of impaired waters and TMDL information: Epa.gov: https://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T. (accessed June 2021).
  141. Polluted runoff: Nonpoint source pollution: EPA.gov: https://www.epa.gov/nps#:~:text=Nonpoint%20source%20(NPS)%20pollution%20is,the%20basics%20of%20NPS%20pollution. (accessed June 2021).
  142. Safe drinking water act (SDWA): EPA.gov: https://www.epa.gov/sdwa. (accessed May 2021).
  143. EPA, 2010, US EPA-approved total maximum daily load (TMDL) for the Middle Rio Grande Watershed: Environmental Protection Agency, 170 p., https://www.epa.gov/sites/production/files/2015-10/documents/middle_rio_grande_nm.pdf.
  144. EPA, 2017, Multi-model framework for quantitative sectoral impacts analysis: A technical report for the Fourth National Climate Assessment: U.S. Environmental Protection Agency EPA 430-R-17-001, 277 p., https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=OAP&dirEntryId=335095.
  145. Eppes, M., Ld, M., Wegmann, K., and Scuderi, L., 2010, Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation: Geomorphology, v. 123, p. 97-108, https://doi.org/10.1016/j.geomorph.2010.07.003.
  146. Eppes, M. C., 2002, Soil Geomorphology of the north flank of the San Bernardino Mountains, California, Ph.D. dissertation: The University of New Mexico, 283 p.
  147. Eppes, M. C., and Harrison, J. B. J., 1999, Spatial variability of soils developing on basalt flows in the Potrillo volcanic field, southern New Mexico: prelude to a chronosequence study: Earth Surface Processes and Landforms, v. 24, no. 11, p. 1009-1024, https://doi.org/10.1002/(SICI)1096-9837(199910)24:11<1009::AID-ESP26>3.0.CO;2-B.
  148. Eppes, M. C., and Keanini, R., 2017, Mechanical weathering and rock erosion by climate-dependent subcritical cracking: Reviews of Geophysics, v. 55, no. 2, p. 470-508, https://doi.org/10.1002/2017RG000557.
  149. Etheredge, D., Gutzler, D. S., and Pazzaglia, F. J., 2004, Geomorphic response to seasonal variations in rainfall in the Southwest United States: Geological Society of America Bulletin, v. 116, no. 5, p. 606, https://doi.org/10.1130/B22103.1.
  150. Falk, D. A., Heyerdahl, E. K., Brown, P. M., Farris, C., Fulé, P. Z., McKenzie, D., Swetnam, T. W., Taylor, A. H., and Van Horne, M. L., 2011, Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks: Frontiers in Ecology and the Environment, v. 9, no. 8, p. 446-454, https://doi.org/10.1890/100052.
  151. Fant, C., Srinivasan, R., Boehlert, B., Rennels, L., Chapra, S. C., Strzepek, K. M., Corona, J., Allen, A., and Martinich, J., 2017, Climate change impacts on US water quality using two models: HAWQS and US Basins: Water, v. 9, no. 2, p. 21, https://doi.org/10.3390/w9020118.
  152. Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T., Berke, M. A., Smith, S. J., Goff, F., Donohoo-Hurley, L., Cisneros-Dozal, L. M., et al., 2011, Extended megadroughts in the Southwestern United States during Pleistocene interglacials: Nature, v. 470, no. 7335, p. 518-521, https://doi.org/10.1038/nature09839.
  153. Feldman, A. D., 2018, Soil chronosequence study of Long Valley, New Mexico: Insights into the development of soils on Pleistocene and Holocene moraine Catenas, Master of Geology thesis: New Mexico Institute of Mining and Technology, 91 p.
  154. Flood insurance: Fema.gov: https://www.fema.gov/flood-insurance. (accessed April, 2021).
  155. FEMA, 2004, Federal guidelines for dam safety: U. S. Department of Homeland Security Federal Emergency Management Agency, FEMA 93, https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_P-93.pdf.
  156. FEMA, 2013, Federal guidelines for dam safety: Emergency action planning for dams: Federal Emergency Management Agency, FEMA 64, 73 p., https://damsafety-prod.s3.amazonaws.com/s3fs-public/FEMA%20Federal%20Guidelines%20EAP%20P-64-2013.pdf.
  157. Field, J. P., Belnap, J., Breshears, D. D., Neff, J. C., Okin, G. S., Whicker, J. J., Painter, T. H., Ravi, S., Reheis, M. C., and Reynolds, R. L., 2010, The ecology of dust: Frontiers in Ecology and the Environment, v. 8, no. 8, p. 423-430, https://doi.org/10.1890/090050.
  158. Fitch, E. P., and Meyer, G. A., 2016, Temporal and spatial climatic controls on Holocene fire-related erosion and sedimentation, Jemez Mountains, New Mexico: Quaternary Research, v. 85, no. 1, p. 75-86, https://doi.org/10.1016/j.yqres.2015.11.008.
  159. Floyd, M. L., Romme, W. H., and Hanna, D. D., 2000, Fire history and vegetation pattern in Mesa Verde National Park, Colorado, USA: Ecological Applications, v. 10, no. 6, p. 1666-1680, https://doi.org/10.1890/1051-0761(2000)010[1666:FHAVPI]2.0.CO;2.
  160. Floyd, M. L., Romme, W. H., and Hanna, D. D., 2021, Effects of recent wildfires in piñon-juniper woodlands of Mesa Verde National Park, Colorado, USA: Natural Areas Journal, v. 41, no. 1, p. 28-38, https://doi.org/10.3375/043.041.0105.
  161. Fluke, J., Gonzalez-Pinzon, R., and Thomson, B., 2019, Riverbed sediments control the spatiotemporal variability of E. coli in a highly managed, arid river: Frontiers in Water, v. 1, no. 4, p. 13, https://doi.org/10.3389/frwa.2019.00004.
  162. Forman, S., Marín, L., Gómez, J., and Pierson, J., 2008, Late Quaternary eolian sand depositional record for Southwestern Kansas: Landscape sensitivity to droughts: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 265, p. 107-120, https://doi.org/10.1016/j.palaeo.2008.04.028.
  163. Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., et al., 2021, Anthropogenic intensification of short-duration rainfall extremes: Nature Reviews Earth & Environment, v. 2, no. 2, p. 107-122, https://doi.org/10.1038/s43017-020-00128-6.
  164. Frankel, J., 2018, Crisis on the high plains: The loss of America’s largest aquifer – The Ogallala, University of Denver Water Law Review at the Strum College of Law http://duwaterlawreview.com/crisis-on-the-high-plains-the-loss-of-americas-largest-aquifer-the-ogallala/.
  165. Frankson, R., Kunkel, K. E., Stevens, L. E., and Easterling, D. R., 2017, New Mexico State Climate Summary, NOAA Technical Report NESDIS 149-NM, May 2019 Revision, 4 p., https://statesummaries.ncics.org/downloads/NM-print-2016.pdf.
  166. Frechette, J. D., and Meyer, G. A., 2009, Holocene fire-related alluvial-fan deposition and climate in Ponderosa Pine and mixed-conifer forests, Sacramento Mountains, New Mexico, USA: The Holocene, v. 19, no. 4, p. 639-651, https://doi.org/10.1177/0959683609104031.
  167. Friedman, J. M., Vincent, K. R., Griffin, E. R., Scott, M. L., Shafroth, P. B., and Auble, G. T., 2015, Processes of arroyo filling in northern New Mexico, USA: Geological Society of America Bulletin Bulletin, v. 127, no. 3-4, p. 621-640, https://doi.org/10.1130/B31046.1.
  168. Friggens, M. M., 2015, Climate change for the New Mexico state wildlife action plan: US Forest Service, Rocky Mountain Research Station, http://www.bison-m.org/documents/48358_Friggens2015SWAPccFnl.pdf.
  169. Fuchs, E. H., 2002, Historic increases in woody vegetation in Lincoln County, New Mexico, Albuquerque, N.M., VanGuard Print. Co.
  170. Funk, J., Barnett-Loro, C., Rising, M., and Dayette, J., 2016, Confronting climate change in New Mexico: Action needed today to prepare the state for a hotter, drier future: Union of Concerned Scientists, https://www.ucsusa.org/resources/confronting-climate-change-new-mexico.
  171. Gallaher, B. M., and Koch, R. J., 2004, Cerro Grande Fire impacts to water quality and stream flow near Los Alamos National Laboratory: Results of four years of monitoring: Los Alamos National Laboratory LA-14177, 210 p., https://doi.org/10.2172/835908.
  172. Garfin, G., Jardine, A., Merideth, R., Black, M., and LeRoy, S., 2013, Assessment of climate change in the Southwest United States: Southwest Climate Alliance, National Climate Assessment Report, 506 p., https://doi.org/10.5822/978-1-61091-484-0.
  173. Gelca, R., Hayhoe, K., Scott-Fleming, I., Crow, C., Dawson, D., and Patino, R., 2016, Climate-water quality relationships in Texas reservoirs: Hydrological Processes, v. 30, no. 1, p. 12-29, https://doi.org/10.1002/hyp.10545.
  174. Gellis, A. C., Elliott, J. G., and Pavich, M., 2017, Geomorphic processes responsible for decadal-scale arroyo changes, Rio Puerco, New Mexico: GSA Bulletin, https://doi.org/10.1130/B31622.1.
  175. Gellis, A. C., Pavich, M. J., Ellwein, A. L., Aby, S., Clark, I., Wieczorek, M. E., and Viger, R., 2012, Erosion, storage, and transport of sediment in two subbasins of the Rio Puerco, New Mexico: GSA Bulletin, v. 124, no. 5-6, p. 817-841, https://doi.org/10.1130/B30392.1.
  176. Gherardi, L. A., and Sala, O. E., 2015, Enhanced precipitation variability decreases grass- and increases shrub-productivity: Proceedings of the National Academy of Sciences of the United States of America, v. 112, no. 41, p. 12735-12740, https://doi.org/10.1073/pnas.1506433112.
  177. Gierke, C., Newton, B. T., and Phillips, F. M., 2016, Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study: Hydrogeology journal, v. 2016 v.24 no.4, no. no. 4, p. pp. 805-818, https://doi.org/10.1007/s10040-016-1403-1.
  178. Gilbert, G., 1880, Geology of the Henry Mountains U.S. Geological Survey, USGS Report 170 p., https://doi.org/10.3133/70039916.
  179. Gile, L., Hawley, J., and Grossman, R., 1981, Soils and geomorphology in the Basin and Range area of Southern New Mexico: Socorro: New Mexico Institute of Mining and Technology, Guidebook to the Desert Project, State Bureau of Mines and Mineral Resources Memoir 39, 222 p., https://geoinfo.nmt.edu/publications/monographs/memoirs/39/.
  180. Glaser, L. S., undated, San Juan-Chama Project. US Bureau of Reclamation, https://www.usbr.gov/projects/pdf.php?id=186.
  181. Gonzales, P., Garfin, G., Breshears, D., Broks, K., Elias, E., Huntly, N., Maldonado, J., Mantua, N., Margolis, H., and Udall, B., 2018, Southwest. Impacts, risks, and adaptations in the United States: Fourth National Climate Assessment: U.S. Global Change Research Program, Volume II, 1101-1184 p., https://doi.org/10.7930/NCA4.2018.CH25.
  182. Gould, G. K., Liu, M., Barber, M. E., Cherkauer, K. A., Robichaud, P. R., and Adam, J. C., 2016, The effects of climate change and extreme wildfire events on runoff erosion over a mountain watershed: Journal of Hydrology, v. 536, no. 5, p. 74-91, https://doi.org/10.1016/j.jhydrol.2016.02.025.
  183. Goulden, M. L., and Bales, R. C., 2019, California forest die-off linked to multi-year deep soil drying in 2012–2015 drought: Nature Geoscience, v. 12, no. 8, p. 632-637, https://doi.org/10.1038/s41561-019-0388-5.
  184. Graf, W. L., and Lecce, S. A., 1988, Fluvial processes in dryland rivers, Berlin, Springer-Verlag New York.
  185. Graham, R., Rossi, A., and Hubbert, K., 2010, Rock to regolith conversion, producing hospitable substrates for terrestrial ecosystems, GSA Today, Volume 20, p. 4–9, https://doi.org/10.1130/GSAT57A.1.
  186. Grant, G. E., Tague, C. L., and Allen, C. D., 2013, Watering the forest for the trees: an emerging priority for managing water in forest landscapes: Frontiers in Ecology and the Environment, v. 11, no. 6, p. 314-321, https://doi.org/10.1890/120209.
  187. GregLonewolf, 2011, Santa Clara Creek flash flooding: Santa Clara Pueblo, NM, YouTube, youtube video, https://www.youtube.com/watch?v=_OWwrln4oeo.
  188. Gremer, J. R., Bradford, J. B., Munson, S. M., and Duniway, M. C., 2015, Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the Southwestern United States: Glob Chang Biololgy, v. 21, no. 11, p. 4049-4062, https://doi.org/10.1111/gcb.13043.
  189. Griffin, D., Woodhouse, C. A., Meko, D. M., Stahle, D. W., Faulstich, H. L., Carrillo, C., Touchan, R., Castro, C. L., and Leavitt, S. W., 2013, North American monsoon precipitation reconstructed from tree-ring latewood: Geophysical Research Letters, v. 40, no. 5, p. 954-958, https://doi.org/10.1002/grl.50184.
  190. Grissino-Mayer, H. D., 1995, Tree-ring reconstructions of climate and fire history at El Malpais National Monument, New Mexico, PhD: The University of Arizona, 407 p, http://hdl.handle.net/10150/191192.
  191. Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G., Koutroulis, A. G., Leonard, M., Liu, J., Müller Schmied, H., Papadimitriou, L., et al., 2021, Globally observed trends in mean and extreme river flow attributed to climate change: Science, v. 371, no. 6534, p. 1159-1162, https://doi.org/10.1126/science.aba3996.
  192. Guiterman, C. H., Margolis, E. Q., Allen, C. D., Falk, D. A., and Swetnam, T. W., 2018, Long-term persistence and fire resilience of oak shrubfields in dry conifer forests of Northern New Mexico: Ecosystems, v. 21, no. 5, p. 943-959, https://doi.org/10.1007/s10021-017-0192-2.
  193. Guiterman, C. H., Margolis, E. Q., Baisan, C. H., Falk, D. A., Allen, C. D., and Swetnam, T. W., 2019, Spatiotemporal variability of human-fire interactions on the Navajo Nation: Ecosphere, v. 10, no. 11, https://doi.org/10.1002/ecs2.2932.
  194. Gutiérrez, J. M., Jones, R. G., Narisma, G. T., Alves, L. M., Amjad, M., Gorodetskaya, I. V., Grose, M., Klutse, N. A. B., Krakovska, S., Li, J., et al., 2021, Atlas: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press., Interactive Atlas available from Available from http://interactive-atlas.ipcc.ch/ (in press).
  195. Gutiérrez-Jurado, H. A., and Vivoni, E. R., 2013, Ecogeomorphic expressions of an aspect-controlled semiarid basin: II. Topographic and vegetation controls on solar irradiance: Ecohydrology, v. 6, no. 1, p. 24-37, https://doi.org/10.1002/eco.1263.
  196. Gutzler, D., 2004, New Mexico’s changing climate, New Mexico Earth Matters, Volume 4, New Mexico Bureau of Geology and Mineral Resources, https://geoinfo.nmt.edu/publications/periodicals/earthmatters/4/n2/em_v4_n2.pdf.
  197. Gutzler, D., 2013, Streamflow projections for the Upper Gila River: New Mexico Interstate Stream Commission, 27 p., https://www.ose.state.nm.us/Basins/Colorado/AWSA/Studies/2013_Gutzler_StrmflwProjRpt.pdf.
  198. Gutzler, D., 2020, New Mexico's climate in the 21st century: A great change is underway, New Mexico Earth Matters, Volume 20, New Mexico Bureau of Geology and Mineral Resources, p. 1-6, https://geoinfo.nmt.edu/publications/periodicals/earthmatters/20/n2/em_v20_n2.pdf.
  199. Gutzler, D., and Robbins, T., 2011, Climate variability and projected change in the Western United States: Regional downscaling and drought statistics: Climate Dynamics : Observational, Theoretical and Computational Research on the Climate System, v. 37, no. 5-6, p. 835-849, https://doi.org/10.1007/s00382-010-0838-7.
  200. Haak, A. L., Geological, S., Trout, U., and United States. Forest, S., 2010, The potential influence of changing climate on the persistence of salmonids of the inland West: Reston, Va., U.S. Dept. of the Interior, U.S. Geological Survey, http://pubs.usgs.gov/of/2010/1236/pdf/OF10-1236.pdf.
  201. Hacker, L. W., 1977, Soil survey of Bernalillo County and parts of Sandoval and Valencia Counties, New Mexico: United States Department of Agriculture and United States Department of the Interior and New Mexico Agricultural Experiment Station, https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/new_mexico/NM600/0/bernalillo.pdf.
  202. Haffey, C., Sisk, T. D., Allen, C. D., Thode, A. E., and Margolis, E. Q., 2018, Limits to Ponderosa Pine regeneration following large high-severity forest fires in the United States Southwest: Fire Ecology, v. 14, no. 1, p. 143-163, https://doi.org/10.4996/fireecology.140114316.
  203. Hansen, E. M., Fenn, D. D., Schreiner, L. C., Stodt, R. W., and Miller, J. F., 1988, Probable maximum precipitation estimates, United States between the continental divide and the 103rd Meridian: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, U.S. Department of Army Corps of Engineers, U.S. Department of Interior Bureau of Reclamation Hydrometeorological Report No. 55A, https://repository.library.noaa.gov/view/noaa/7154.
  204. Hansen, E. M., Schwarz, F. K., and Riedel, J. T., 1984, Probable maximum precipitation estimates, Colorado River and Great Basin drainages: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, U.S. Department of Army Corps of Engineers, U.S. Department of Interior Bureau of Reclamation, Hydrometeorological Report 49, https://www.weather.gov/media/owp/hdsc_documents/PMP/HMR49.pdf.
  205. Harpold, A. A., Biederman, J. A., Condon, K., Merino, M., Korgaonkar, Y., Nan, T., Sloat, L. L., Ross, M., and Brooks, P. D., 2014, Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA: Ecohydrology, v. 7, no. 2, p. 440-452, https://doi.org/10.1002/eco.1363.
  206. Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y., Allen, C. D., Arndt, S. K., Breshears, D. D., Davi, H., Galbraith, D., et al., 2018, Research frontiers for improving our understanding of drought-induced tree and forest mortality: New Phytologist, v. 218, no. 1, p. 15-28, https://doi.org/10.1111/nph.15048.
  207. Harvey, B. J., Andrus, R. A., Battaglia, M. A., Negrón, J. F., Orrego, A., and Veblen, T. T., 2021, Droughty times in mesic places: Factors associated with forest mortality vary by scale in a temperate subalpine region: Ecosphere, v. 12, no. 1, p. e03318, https://doi.org/10.1002/ecs2.3318.
  208. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C., 1997, The soil production function and landscape equilibrium: Nature, v. 388, no. 6640, p. 358-361, https://doi.org/10.1038/41056.
  209. Helsel, D. R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A., and Gilroy, E. J., 2020, Statistical methods in water resources, Techniques and Methods 4-A3, 484 p., https://doi.org/10.3133/tm4A3.
  210. Hereford, R., 1993, Entrenchment and widening of the upper San Pedro River, Arizona, Geological society of America, https://doi.org/10.1130/SPE282-p1.
  211. Hereford, R., and Webb, R. H., 1992, Historic variation of warm-season rainfall, Southern Colorado Plateau, Southwestern USA: Climatic Change, v. 22, no. 3, p. 239–256, https://doi.org/10.1007/BF00143030.
  212. Higuera, P. E., Shuman, B. N., and Wolf, K. D., 2021, Rocky Mountain subalpine forests now burning more than any time in recent millennia: Proc Natl Acad Sci U S A, v. 118, no. 25, https://doi.org/10.1073/pnas.2103135118.
  213. Hillerman, T., 1957, Forests threatened by beetle invasion, Santa Fe New Mexican, https://santafenewmexican.newspaperarchive.com/santa-fe-new-mexican/1957-06-23/.
  214. Hirmas, D. R., and Graham, R. C., 2011, Pedogenesis and soil-geomorphic relationships in an arid mountain range, Mojave Desert, California: Soil Science Society of America Journal, v. 75, no. 1, p. 192-206, https://doi.org/10.2136/sssaj2010.0152.
  215. Holden, Z. A., Morgan, P., Crimmins, M. A., Steinhorst, R. K., and Smith, A. M. S., 2007, Fire season precipitation variability influences fire extent and severity in a large Southwestern wilderness area, United States: Gila climate severity Geophysical Research Letters, v. 34, no. 16, https://doi.org/10.1029/2007GL030804.
  216. Holliday, V. T., McFadden, L. D., Bettis, E. A., and Birkeland, P. W., 2001, The soil survey and soil geomorphology, in Helms, D., ed., History of the National Cooperative Soil Survey, Iowa State University Press.
  217. Holmgren, M., Stapp, P., Dickman, C. R., Gracia, C., Graham, S., Gutiérrez, J. R., Hice, C., Jaksic, F., Kelt, D. A., Letnic, M., et al., 2006, Extreme climatic events shape arid and semiarid ecosystems: Frontiers in Ecology and the Environment, v. 4, no. 2, p. 87-95, https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2.
  218. Hortness, J. E., 2006, Estimating low-flow frequency statistics for unregulated streams in Idaho, Scientific Investigations Report 2006-5035, 40 p., https://pubs.usgs.gov/sir/2006/5035/.
  219. Rio Grande flood control system: Ibwc.gov: https://www.ibwc.gov/Mission_Operations/RG_Flood_Control.html. (accessed May, 2021).
  220. IPCC, 2007, Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change Intergovernmental Panel on Climate Change (IPCC), 104 p., https://www.ipcc.ch/report/ar4/wg3/.
  221. IPCC, 2013, Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change Intergovernmental Panel on Climate Change (IPCC), 1535 p., https://doi.org/10.1017/CBO9781107415324.
  222. IPCC, 2014, Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change Intergovernmental Panel on Climate Change (IPCC), 151 p., https://www.ipcc.ch/report/ar5/syr/.
  223. IPCC, 2018, Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty: Intergovernmental Panel on Climate Change (IPCC), IPCC Special Report, https://www.ipcc.ch/sr15/.
  224. IPCC, 2021, Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change: AR6 Cambridge University Press, https://www.ipcc.ch/report/ar6/wg1/#FullReport (in press).
  225. Isaak, D. J., Wollrab, S., Horan, D., and Chandler, G., 2012, Climate change effects on stream and river temperatures across the Northwest U.S. from 1980-2009 and implications for salmonid fishes: Climatic Change, v. 113, p. 499-524, https://doi.org/10.1007/s10584-011-0326-z.
  226. Jackson, S. T., 2021, Transformational ecology and climate change: Science, v. 373, no. 6559, p. 1085-1086, https://doi.org/10.1126/science.abj6777.
  227. Jacobsen, A. L., and Pratt, R. B., 2018, Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands: New phytologist, v. 219, no. 2, p. 498-504, https://doi.org/10.1111/nph.15186.
  228. Janssen, E., Wuebbles, D. J., Kunkel, K. E., Olsen, S. C., and Goodman, A., 2014, Observational- and model-based trends and projections of extreme precipitation over the contiguous United States: Earth's Future, v. 2, no. 2, p. 99-113, https://doi.org/10.1002/2013ef000185.
  229. Jantarasami, L. C., Novak, R., Delgado, R., Marino, E., McNeeley, S., Narducci, C., Raymond-Yakoubian, J., Singletary, L., and Whyte, K. P., 2018, Tribes and indigenous peoples. Risks, and adaptations in the United States: Fourth National Climate Assessment: U.S. Global Change Research Program, Chapter 15, Volume II, 572-603 p., https://doi.org/10.7930/NCA4.2018.CH15.
  230. Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J., 2013, Terrestrial water fluxes dominated by transpiration: Nature, v. 496, p. 347-350, https://doi.org/10.1038/nature11983.
  231. Jennings, M. D., and Harris, G. M., 2017, Climate change and ecosystem composition across large landscapes: Landscape Ecology, v. 32, no. 1, p. 195-207, https://doi.org/10.1007/s10980-016-0435-1.
  232. Jenny, H., 1941, Factors of soil formation: A system of quantitative pedology, New York, McGraw-Hill.
  233. Jentsch, A., Kreyling, J., and Beierkuhnlein, C., 2007, A new generation of climate-change experiments: Events, not trends: Frontiers in Ecology and the Environment, v. 5, no. 7, p. 365-374, https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2.
  234. Jiao, W., Wang, L., Smith, W. K., Chang, Q., Wang, H., and D’Odorico, P., 2021, Observed increasing water constraint on vegetation growth over the last three decades: Nature Communications, v. 12, no. 1, https://doi.org/10.1038/s41467-021-24016-9.
  235. Jiménez-Cisneros, B. E., Oki, T., Arnell, N. W., Benito, G., Cogley, J. G., Döll, P., Jiang, T., and Mwakalila, S. S., 2014, Freshwater resources, in Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., eds., Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change: Cambridge, United Kingdom and New York, NY, USA, Intergovernmental Panel on Climate Change (IPCC), p. 229-269, https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap3_FINAL.pdf.
  236. Jiménez-Moreno, G., Anderson, R. S., Atudorei, V., and Toney, J. L., 2011, A high-resolution record of climate, vegetation, and fire in the mixed conifer forest of Northern Colorado, USA: GSA Bulletin, v. 123, no. 1-2, p. 240-254, https://doi.org/10.1130/b30240.1.
  237. Jiménez-Moreno, G., Anderson, R. S., Fawcett, P. J., Staley, S. E., Brown, E. T., Petronis, M. S., Stockhecke, M., Werne, J. P., Toney, J. L., and McKay, N. P., 2019, History of vegetation, lake fluctuations and climate since the last interglacial recorded in the sediments from Stoneman Lake, Arizona, USA, p. 6567, https://ui.adsabs.harvard.edu/abs/2019EGUGA..21.6567J.
  238. Johnson, P. S., Koning, D. J., Timmons, S. S., and Felix, B., 2016, Bulletin 161-Geology and hydrology of groundwater-fed springs and wetlands at La Cienega, Santa Fe County, New Mexico: New Mexico Bureau of Geology and Mineral Resources
  239. A division of New Mexico Institute of Mining and Technology, NMBGMR Bulletin, 161.
  240. Johnson, T. E., Butcher, J. B., Parker, A., and Weaver, C. P., 2012, Investigating the sensitivity of U.S. streamflow and water quality to climate change: U.S. EPA global change research program’s 20 watersheds project: Journal of Water Resources Planning and Management, v. 138, no. 5, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000175.
  241. Johnson, U., T. , Colohan, P., Aghakouchak, A., Brown, C., McCabe, G., Pulwarty, R., and Sankarasubramanian, A., 2018, Water. Impacts, risks, and adaptation in the United States: Fourth national climate assessment: U.S. Global Change Research Program Volume II, 145–173 p., https://doi.org/10.7930/NCA4.2018.CH3.
  242. Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., et al., 2016, Changing disturbance regimes, ecological memory, and forest resilience: Frontiers in Ecology and the Environment, v. 14, no. 7, p. 369-378, https://doi.org/10.1002/fee.1311.
  243. Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M., 2015, Climate-induced variations in global wildfire danger from 1979 to 2013: Nature communications, v. 6, no. 1, p. 1–11, https://doi.org/10.1038/ncomms8537.
  244. Jones, S. M., and Gutzler, D. S., 2016, Spatial and seasonal variations in aridification across Southwest North America: Journal of Climate, v. 29, no. 12, p. 4637-4649, https://doi.org/10.1175/JCLI-D-14-00852.1.
  245. Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., Martínez-Vilalta, J., and Lloret, F., 2017, Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback: Global Change Biology, v. 23, no. 9, p. 3742-3757, https://doi.org/10.1111/gcb.13636.
  246. Kappel, B., Hultstrand, D., Steinhilber, K., and Rodel, J., 2020, Climate change and PMP: Are these storms changing? : Journal of Dam Safety, v. 17, no. 3, p. 16, https://www.appliedweatherassociates.com/uploads/1/3/8/1/13810758/17.3_kappel_climate_change_and_pmp_with_cover.pdf.
  247. Karlstrom, E. T., and Karlstrom, T. N., 1987, Late Quaternary alluvial history of the American West: Toward a process paradigm: Geology, v. 15, no. 1, p. 88–89, https://doi.org/10.1130/0091-7613(1987)15<88:LQAHOT>2.0.CO;2.
  248. Kelly, A. E., and Goulden, M. L., 2008, Rapid shifts in plant distribution with recent climate change: Proceedings of the National Academy of Sciences of the United States of America, v. 105, no. 33, p. 11823-11826, https://doi.org/10.1073/pnas.0802891105.
  249. Ketchum, D. G., 2016, High-resolution estimation of groundwater recharge for the entire state of New Mexico using a soil-water balance model, M.S. thesis: New Mexico Institute of Mining and Technology, Socorro, New Mexico, 142 p, https://nmt.on.worldcat.org/v2/oclc/990144964.
  250. Keyes, C. R., 1906, Physiography of New Mexico: Journal of Geography, v. 5, no. 6, p. 251-256, https://doi.org/10.1080/00221340608986127.
  251. Kibler, C. L., Schmidt, E. C., Roberts, D. A., Stella, J. C., Kui, L., Lambert, A. M., and Singer, M. B., 2021, A brown wave of riparian woodland mortality following groundwater declines during the 2012–2019 California drought: Environmental Research Letters, v. 16, no. 8, p. 084030, https://doi.org/10.1088/1748-9326/ac1377.
  252. Klos, P. Z., Goulden, M. L., Riebe, C. S., Tague, C. L., O’Geen, A. T., Flinchum, B. A., Safeeq, M., Conklin, M. H., Hart, S. C., Berhe, A. A., et al., 2018, Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate: WIREs Water, v. 5, no. 3, p. e1277, https://doi.org/10.1002/wat2.1277.
  253. Knowles, N., Dettinger, M. D., and Cayan, D. R., 2006, Trends in snowfall versus rainfall in the Western United States: Journal of Climate, v. 19, no. 18, p. 4545-4559, https://doi.org/10.1175/JCLI3850.1.
  254. Kochel, R. C., Miller, J. R., and Ritter, D. F., 1997, Geomorphic response to minor cyclic climate changes, San Diego County, California: Geomorphology, v. 19, no. 3-4, p. 277–302, https://doi.org/10.1016/S0169-555X(97)00013-5.
  255. Koehn, C. R., Petrie, M. D., Bradford, J. B., Litvak, M. E., and Strachan, S., 2021, Seasonal precipitation and soil moisture relationships across forests and woodlands in the Southwestern United States: Journal of Geophysical Research: Biogeosciences, v. 126, no. 4, p. e2020JG005986, https://doi.org/10.1029/2020JG005986.
  256. KQRE, 2021, Farmington implements water shortage advisory, urges residents to reduce use, New Mexico News, https://www.krqe.com/news/new-mexico/farmington-implements-water-shortage-advisory-urges-residents-to-reduce-use/.
  257. Kunkel, K. E., Stevens, S. E., Stevens, L. E., and Karl, T. R., 2020, Observed climatological relationships of extreme daily precipitation events with precipitable water and vertical velocity in the contiguous United States: Geophysical Research Letters, v. 47, no. 12, https://doi.org/10.1029/2019gl086721.
  258. Lambert, A., Hallar, A. G., Garcia, M., Strong, C., Andrews, E., and Hand, J. L., 2020, Dust impacts of rapid agricultural expansion on the Great Plains: Geophysical Research Letters, v. 47, no. 20, https://doi.org/10.1029/2020GL090347.
  259. Lancaster, N., and Helm, P., 2000, A test of a climatic index of dune mobility using measurements from the Southwestern United States: Earth Surface Processes and Landforms, v. 25, no. 2, p. 197-207, https://doi.org/10.1002/(SICI)1096-9837(200002)25:2<197::AID-ESP82>3.0.CO;2-H.
  260. Lancaster, N., and Marticorena, B., 2008, Introduction to special section on Aeolian Processes: Field Observations and Modeling: Journal of Geophysical Research: Earth Surface, v. 113, no. F2, https://doi.org/10.1029/2008JF001056.
  261. Land, K., 2021, Is the Dust Bowl returning?, Albuquerque Journal: Albuquerque, NM, https://www.abqjournal.com/1531968/is-the-dust-bowl-returning-ex-a-windy-spring-could-bring-an-influx-of-dust.html.
  262. Lane, A. D., Kirk, M. F., Whittemore, D. O., Stotler, R., Hildebrand, J., and Feril, O., 2019, Long-term (1970s–2016) changes in groundwater geochemistry in the High Plains aquifer in south-central Kansas, USA: Hydrogeology Journal, v. 28, no. 2, p. 491-501, https://doi.org/10.1007/s10040-019-02083-z.
  263. Lang, W. B., 1947, Triassic Deposits of Pecos Valley, Southeastern New Mexico: Geological notes AAPG Bulletin, v. 31, no. 9, p. 1673-1674, https://doi.org/10.1306/3D933A43-16B1-11D7-8645000102C1865D.
  264. Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Braun, J. J., and Zavorotny, V. U., 2008, Use of GPS receivers as a soil moisture network for water cycle studies: Geophysical Research Letters, v. 35, no. 24, p. 5, https://doi.org/10.1029/2008GL036013.
  265. Lauenroth, W. K., and Bradford, J. B., 2009, Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought: Ecohydrology, v. 2, no. 2, p. 173-181, https://doi.org/10.1002/eco.53.
  266. Lee, S.-Y., Fullerton, A. H., Sun, N., and Torgersen, C. E., 2020, Projecting spatiotemporally explicit effects of climate change on stream temperature: A model comparison and implications for coldwater fishes: Journal of Hydrology, v. 588, p. 16, https://doi.org/10.1016/j.jhydrol.2020.125066.
  267. Lengerer, B., Algrain, M., Lefevre, M., Delroisse, J., Hennebert, E., and Flammang, P., 2019, Interspecies comparison of sea star adhesive proteins: Philosophical Transactions of the Royal Society B: Biological Sciences, v. 374, no. 1784, p. 20190195, https://doi.org/10.1098/rstb.2019.0195.
  268. Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., and Schellnhuber, H. J., 2019, Climate tipping points - Too risky to bet against: Nature, v. 575, no. 7784, p. 592-595, https://doi.org/10.1038/d41586-019-03595-0.
  269. Leopold, L. B., 1951, Rainfall frequency: An aspect of climatic variation: Eos, Transactions American Geophysical Union, v. 32, no. 3, p. 347–357, https://doi.org/10.1029/TR032i003p00347.
  270. Lewis, A., 2018, Monitoring effects of wildfire mitigation treatments on water budget components: A paired basin study in the Santa Fe Watershed, New Mexico, Bulletin, 163, 52 p., https://geoinfo.nmt.edu/publications/monographs/bulletins/163/.
  271. Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z. X., Huang, J., Sheffield, J., Berg, A. M., Keenan, T. F., et al., 2021, Multifaceted characteristics of dryland aridity changes in a warming world: Nature Reviews Earth & Environment, v. 2, no. 4, p. 232-250, https://doi.org/10.1038/s43017-021-00144-0.
  272. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J., 1994, A simple hydrologically based model of land surface water and energy fluxes for general circulation models: Journal of Geophysical Research: Atmospheres, v. 99, no. D7, p. 14415-14428, https://doi.org/10.1029/94JD00483.
  273. Lindsey, R., 2013, Climate change to increase water stress in many parts of U.S., https://www.climate.gov/news-features/featured-images/climate-change-increase-water-stress-many-parts-us.
  274. Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L., 2009, Climate and wildfire area burned in western US ecoprovinces, 1916–2003: Ecological Applications, v. 19, no. 4, p. 1003-1021, https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/07-1183.1?sid=nlm%3Apubmed.
  275. Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S. I., 2020, Soil moisture dominates dryness stress on ecosystem production globally: Nature Communications, v. 11, no. 1, p. 4892, https://doi.org/10.1038/s41467-020-18631-1.
  276. Liu, Y., Stanturf, J., and Goodrick, S., 2010, Trends in global wildfire potential in a changing climate: Forest Ecology and Management, v. 259, no. 4, p. 685–697, https://doi.org/10.1016/j.foreco.2009.09.002.
  277. Livneh, B., Deems, J. S., Buma, B., Barsugli, J. J., Schneider, D., Molotch, N. P., Wolter, K., and Wessman, C. A., 2015, Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains: Journal of Hydrology, v. 523, p. 196-210, https://doi.org/10.1016/j.jhydrol.2015.01.039.
  278. Llewellyn, D., and Vaddey, S., 2013, West-wide climate risk assessment: Upper Rio Grande impact assessment: U.S. Bureau of Reclamation, Upper Colorado Region, 169 p., https://www.usbr.gov/watersmart/baseline/docs/urgia/URGIAMainReport.pdf.
  279. Lu, J., Xue, D., Gao, Y., Chen, G., Leung, L. R., and Staten, P., 2018, Enhanced hydrological extremes in the Western United States under global warming through the lens of water vapor wave activity: Climate and Atmospheric Science, v. 1, no. 1, https://doi.org/10.1038/s41612-018-0017-9.
  280. Lucas, R. W., Baker, T. T., Wood, M. K., Allison, C. D., and Vanleeuwen, D. M., 2004, Riparian vegetation response to different intensities and seasons of grazing: Journal of Range Management, v. 57, no. 5, p. 466-474, https://doi.org/10.2111/1551-5028(2004)057[0466:RVRTDI]2.0.CO;2.
  281. Lucas, R. W., Baker, T. T., Wood, M. K., Allison, C. D., and VanLeeuwen, D. M., 2009, Streambank morphology and cattle grazing in two montane riparian areas in western New Mexico: Journal of Soil and Water Conservation, v. 64, no. 3, p. 183-189, https://doi.org/10.2489/jswc.64.3.183.
  282. Luo, L., Tang, Y., Zhong, S., Bian, X., and Heilman, W. E., 2013, Will future climate favor more erratic wildfires in the western United States?: Journal of Applied Meteorology and Climatology, v. 52, no. 11, p. 2410-2417, https://doi.org/10.1175/JAMC-D-12-0317.1.
  283. Lynker Technologies, L., 2019, Projecting rainfall intensity duration frequency curves under climate change: Colorado Water Conservation Board, https://waterinfo.org/wp-content/uploads/2020/02/CWCB-IDF-Curve-Projection-Paper-Final.pdf.
  284. Madole, R. F., 1994, Stratigraphic evidence of desertification in the West-Central Great Plains within the past 1000 yr: Geology, v. 22, no. 6, p. 483-486, https://doi.org/10.1130/0091-7613(1994)022<0483:SEODIT>2.3.CO;2.
  285. Magnuson, M. L., Valdez, J. M., Lawler, C. R., Nelson, M., and Petronis, L., 2019, New Mexico water use by categories, 2015: New Mexico Office of the State Engineer Technical Report 55, 142 p., https://www.ose.state.nm.us/WUC/wucTechReports/2015/pdf/2015%20WUR%20final_05142019.pdf.
  286. Mahoney, K., Alexander, M., Scott, J. D., and Barsugli, J., 2013, High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado Front Range under past and future climates: Journal of Climate, v. 26, no. 21, p. 8671-8689, https://doi.org/10.1175/jcli-d-12-00744.1.
  287. Mahoney, K., Lukas, J., and Mueller, M., 2018, Considering climate change in the estimation of extreme precipitation for dam safety Colorado Department of Natural Resources - Division of Water Resources and The Office of the State Engineer Colorado-New Mexico Regional Extreme Precipitation Study, Volume VI, 65 p., http://hermes.cde.state.co.us/drupal/islandora/object/co:33535/datastream/OBJ/view.
  288. Maloney, E. D., Adames, Á. F., and Bui, H. X., 2019, Madden–Julian oscillation changes under anthropogenic warming: Nature Climate Change, v. 9, no. 1, p. 26-33, https://doi.org/10.1038/s41558-018-0331-6.
  289. Mandels, M., 1975, Microbial sources of cellulase: Biotechnology and Bioengineering Symposium, no. 5, p. 81-105.
  290. Mann, D. H., and Meltzer, D. J., 2007, Millennial-scale dynamics of valley fills over the past 12,000 14C yr in Northeastern New Mexico, USA: GSA Bulletin, v. 119, no. 11-12, p. 1433-1448, https://doi.org/10.1130/b26034.1.
  291. Margolis, E. Q., Meko, D. M., and Touchan, R., 2011, A tree-ring reconstruction of streamflow in the Santa Fe River, New Mexico: Journal of Hydrology, v. 397, no. 1, p. 118-127, https://doi.org/10.1016/j.jhydrol.2010.11.042.
  292. Margolis, E. Q., Woodhouse, C. A., and Swetnam, T. W., 2017, Drought, multi-seasonal climate, and wildfire in Northern New Mexico: Climatic Change, v. 142, no. 3, p. 433-446, https://doi.org/10.1007/s10584-017-1958-4.
  293. Marniemi, J., and Parkki, M. G., 1975, Radiochemical assay of glutathione S-epoxide transferase and its enhancement by phenobarbital in rat liver in vivo: Biochemical Pharmacology, v. 24, no. 17, p. 1569-1572, https://doi.org/10.1016/0006-2952(75)90080-5.
  294. Martin, D. A., and Moody, J. A., 2001, Comparison of soil infiltration rates in burned and unburned mountainous watersheds: Hydrological Processes, v. 15, no. 15, p. 2893-2903, https://doi.org/10.1002/hyp.380.
  295. Martino, F., 2012, Las Vegas, NM struggles with water crisis, KRWG Morning Edition, NM State KRWG Public Media, https://www.krwg.org/post/las-vegas-nm-struggles-water-crisis.
  296. Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Matschoss, P. R., et al., 2010, Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties: Intergovernmental Panel On Climate Change (IPCC), http://www.ipcc.ch.
  297. Maxwell, N., 2021, Bonito Lake construction continues, completion expected summer 2022, Alamogordo Daily News: Alamogordo, NM, https://www.alamogordonews.com/story/news/local/community/2021/03/30/bonito-lake-construction-continues-completion-expected-summer-2022/7052860002/.
  298. Maxwell, R. M., and Condon, L. E., 2016, Connections between groundwater flow and transpiration partitioning: Science, v. 353, p. 377-380, https://doi.org/10.1126/science.aaf7891.
  299. Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and Forrester, M. M., 2015, The imprint of climate and geology on the residence times of groundwater: Geophysical Research Letters, v. 43, https://doi.org/10.1002/2015GL066916.
  300. Maxwell, R. M., and Miller, N. L., 2005, Development of a coupled land surface and groundwater model: Journal of Hydrometeorology, v. 6, no. 3, p. 233-247, https://doi.org/10.1175/JHM422.1.
  301. McAuliffe, J., McFadden, L., and Persico, L., 2019, Digging deeper into the tempo and modes of climate change-induced environmental transitions on hillslopes, Eastern Mojave Desert, GSA Annual Meeting Phoenix, Arizona, USA, https://doi.org/10.1130/abs/2019AM-335237.
  302. McAuliffe, J. R., McFadden, L. D., Roberts, L. M., Wawrzyniec, T. F., Scuderi, L. A., Meyer, G. A., and King, M. P., 2014, Non-equilibrium hillslope dynamics and irreversible landscape changes at a shifting Pinyon–Juniper woodland ecotone: Global and Planetary Change, v. 122, p. 1-13, https://doi.org/10.1016/j.gloplacha.2014.07.008.
  303. McAuliffe, J. R., Scuderi, L. A., and McFadden, L. D., 2006, Tree-ring record of hillslope erosion and valley floor dynamics: Landscape responses to climate variation during the last 400yr in the Colorado Plateau, Northeastern Arizona: Global and Planetary Change, v. 50, no. 3, p. 184-201, https://doi.org/10.1016/j.gloplacha.2005.12.003.
  304. McCord, V. A. S., 1996, Flood history reconstruction in Frijoles Canyon using flood-scarred trees: U.S. Department of Agriculture, Forest Service Fire Effects in Southwestern Forests: Proceedings of the Second La Mesa Fire Symposium RM-GTR-286, 216 p., https://www.fs.fed.us/rm/pubs_rm/rm_gtr286/rm_gtr286_114_122.pdf.
  305. McCormick, B., Lukas, J. J., and Mahoney, K. M., 2020, 21st century dam safety rules for extreme precipitation in a changing climate: Journal of Dam Safety, v. 17, no. 3, p. 29–41, https://www.appliedweatherassociates.com/uploads/1/3/8/1/13810758/17.3_kappel_climate_change_and_pmp_with_cover.pdf.
  306. McDonald, E., McFadden, L., and Wells, S., 2002, Regional response of alluvial fans to the Pleistocene-Holocene climatic transition, Mojave Desert, California, Volume 368, https://doi.org/10.1130/0-8137-2368-X.189.
  307. McDonald, L. H., and Stednick, J. D., 2003, Forests and Water: A State-of-the-Art Review for Colorado: Colorado Water Resources Research Institute, Completion Report No. 196, 65 p., https://www.fs.usda.gov/treesearch/pubs/59257.
  308. McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., et al., 2020, Pervasive shifts in forest dynamics in a changing world: Science, v. 368, no. 6494, p. eaaz9463, https://doi.org/10.1126/science.aaz9463.
  309. McDowell, N. G., Allen, C. D., and Marshall, L., 2010, Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect CHRONIC WATER STRESS AND PONDEROSA PINE MORTALITY: Global Change Biology, v. 16, no. 1, p. 399-415, https://doi.org/10.1111/j.1365-2486.2009.01994.x.
  310. McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T., Sevanto, S., Pangle, R., Limousin, J., Plaut, J., Mackay, D. S., et al., 2015, Multi-scale predictions of massive conifer mortality due to chronic temperature rise: Nature Climate Change, https://doi.org/10.1038/nclimate2873.
  311. McFadden, L., Eppes, M., Gillespie, A., and Hallet, B., 2005, Physical weathering in arid landscape due to diurnal variation in the direction of solar heating: Geological Society of America Bulletin v. 117, https://doi.org/10.1130/B25508.1.
  312. McFadden, L. D., 2013, Strongly dust-influenced soils and what they tell us about landscape dynamics in vegetated aridlands of the Southwestern United States, in Bickford, M. E., ed., In The Web of Geological Sciences: Advances, Impacts, and Interactions, Volume 500, p. 501–532, https://doi.org/10.1130/2013.2500(15).
  313. McFadden, L. D., Amundson, R. G., and Chadwick, O. A., 1991, Numerical modeling chemical, and isotopic studies of carbonate accumulation in of arid regions, in Nettleton, W. D., ed., Occurrence, Characteristics, and Genesis of Carbonate, Gypsum, and Silica Accumulations in Soils, Volume 26, Soil Science Society of America, p. 17-35, https://doi.org/10.2136/sssaspecpub26.c2.
  314. McFadden, L. D., and Knuepfer, P. L. K., 1990, Soil geomorphology: the linkage of pedology and surficial processes: Geomorphology, v. 3, no. 3, p. 197-205, https://doi.org/10.1016/0169-555X(90)90003-9.
  315. McFadden, L. D., and McAuliffe, J. R., 1997, Lithologically influenced geomorphic responses to Holocene climatic changes in the Southern Colorado Plateau, Arizona: A soil-geomorphic and ecologic perspective: Geomorphology, v. 19, no. 3, p. 303-332, https://doi.org/10.1016/S0169-555X(97)00017-2.
  316. McFadden, L. D., and Tinsley, J., 1985, Rate and depth of pedogenic-carbonate accumulation in soils: Formation and testing of a compartment model: GSA Special Papers, v. 203, p. 23-41, https://doi.org/10.1130/SPE203-p23.
  317. McGuire, L. A., and Youberg, A. M., 2020, What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA: Landslides, v. 17, p. 2385-2399, https://doi.org/10.1007/s10346-020-01470-y.
  318. McGuire, L. A., Youberg, A. M., Rengers, F. K., Abramson, N. S., Ganesh, I., Gorr, A. N., Hoch, O., Johnson, J. C., Lamom, P., Prescott, A. B., et al., 2021, Extreme precipitation across adjacent burned and unburned watersheds reveals impacts of low severity wildfire on debris-flow processes: Journal of Geophysical Research: Earth Surface, v. 126, no. 4, https://doi.org/10.1029/2020JF005997.
  319. McKinnon, K. A., Poppick, A., and Simpson, I. R., 2021, Hot extremes have become drier in the United States Southwest: Nature Climate Change, v. 11, no. 7, p. 598-604, https://doi.org/10.1038/s41558-021-01076-9.
  320. Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M., Ajami, H., Blasch, K. W., Brookfield, A. E., Castro, C. L., Clark, J. F., Gochis, D. J., et al., 2016, Implications of projected climate change for groundwater recharge in the Western United States: Journal of Hydrology, v. 534, p. 124-138, http://dx.doi.org/10.1016/j.jhydrol.2015.12.027.
  321. Meredith, E. P., Ulbrich, U., and Rust, H. W., 2019, The diurnal nature of future extreme precipitation intensification: Geophysical Research Letters, v. 46, no. 13, p. 7680-7689, https://doi.org/10.1029/2019gl082385.
  322. Meyer, G., 2021, puplic comment: (personal communication).
  323. Meyer, G. A., and Pierce, J. L., 2003, Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective: Forest Ecology and Management, v. 178, no. 1-2, p. 89-104, https://doi.org/10.1016/S0378-1127(03)00055-0.
  324. Meyer, G. A., and Wells, S. G., 1997, Fire-related sedimentation events on alluvial fans, Yellowstone National Park, USA: Journal of Sedimentary Research, v. 67, no. 5, p. 776-791.
  325. Meyer, G. A., Wells, S. G., Balling, R. C., and Jull, A. J. T., 1992, Response of alluvial systems to fire and climate change in Yellowstone National Park: Nature, v. 357, no. 6374, p. 147–150, https://doi.org/10.1038/357147a0.
  326. Meyer, G. A., Wells, S. G., and Timothy Jull, A. J., 1995, Fire and alluvial chronology in Yellowstone National Park: Climatic and intrinsic controls on Holocene geomorphic processes: Geological Society of America Bulletin, v. 107, no. 10, p. 1211–1230, https://doi.org/10.1130/0016-7606(1995)107<1211:FAACIY>2.3.CO;2.
  327. Miller, M. E., 1999, Use of historic aerial photography to study vegetation change in the Negrito Creek Watershed, Southwestern New Mexico: The Southwestern Naturalist, v. 44, no. 2, p. 121-137, https://www.jstor.org/stable/30055418.
  328. Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J., 2008, Stationarity is dead: Whither water management?: Science, v. 319, no. 5863, p. 573-574, https://doi.org/10.1126/science.1151915.
  329. Milly, P. C. D., and Dunne, K. A., 2020, Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation: Science v. 367, no. 6483, p. 1252-1255, https://doi.org/10.1126/science.aay9187.
  330. Mishra, S. K., and Singh, V. P., 2003, SCS-CN method, in Singh, V. P., ed., Soil Conservation Service Curve Number (SCS-CN) Methodology, Volume 42: Dordrecht, Springer Netherlands, p. 84–146, https://lccn.loc.gov/2002043301.
  331. Moeser, C. D., Broxton, P. D., Harpold, A., and Robertson, A., 2020, Estimating the effects of forest structure changes from wildfire on snow water resources under varying meteorological conditions: Water Resources Research, v. 56, no. 11, https://doi.org/10.1029/2020WR027071.
  332. Molles, M. C., Crawford, C. S., Ellis, L. M., Valett, H. M., and Dahm, C. N., 1998, Managed Flooding for Riparian Ecosystem Restoration: BioScience, v. 48, no. 9, p. 749-756, https://doi.org/10.2307/1313337.
  333. Montoya Bryan, S., 2017, Effort to bring water to Eastern New Mexico inches along, US News & World Report, https://www.usnews.com/news/best-states/new-mexico/articles/2017-07-14/effort-to-bring-water-to-eastern-new-mexico-inches-along.
  334. Moody, J. A., 2016, Estimates of peak flood discharge for 21 sites in the Front Range in Colorado in response to extreme rainfall in September 2013: US Geological Survey 2328-0328, https://doi.org/10.3133/sir20165003.
  335. Moody, J. A., and Martin, D. A., 2001, Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range: Earth Surface Processes and Landforms, v. 26, no. 10, p. 1049–1070, https://doi.org/10.1002/esp.253.
  336. Moody, J. A., and Martin, D. A., 2009, Synthesis of sediment yields after wildland fire in different rainfall regimes in the Western United States: International Journal of Wildland Fire v. 18, no. 1, p. 96–115, http://dx.doi.org/10.1071/WF07162.
  337. Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., and Martin, D. A., 2013, Current research issues related to post-wildfire runoff and erosion processes: Earth-Science Reviews, v. 122, p. 10–37, https://doi.org/10.1016/j.earscirev.2013.03.004.
  338. Mosley, L. M., 2015, Drought impacts on the water quality of freshwater systems; Review and integration: Earth-Science Reviews, v. 140, p. 203-214, https://doi.org/10.1016/j.earscirev.2014.11.010.
  339. Mote, P. W., Li, S., Lettenmaier, D., P. , Xiao, M., and Engel, R., 2018, Dramatic declines in snowpack in the Western US: Npj Climate and Atmospheric Science, v. 1, no. 1, p. 1-6, https://doi.org/10.1038/s41612-018-0012-1.
  340. Mrad, A., Katul, G. G., Levia, D. F., Guswa, A. J., Boyer, E. W., Bruen, M., Carlyle-Moses, D. E., Coyte, R., Creed, I. F., van de Giesen, N., et al., 2020, Peak grain forecasts for the US High Plains amid withering waters: Proceedings of the National Academy of Sciences, v. 117, no. 42, p. 26145-26150, https://doi.org/10.1073/pnas.2008383117.
  341. Mueller, S. E., Thode, A. E., Margolis, E. Q., Yocom, L. L., Young, J. D., and Iniguez, J. M., 2020, Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015: Forest Ecology and Management, v. 460, p. 117861, https://doi.org/10.1016/j.foreco.2019.117861.
  342. Muhs, D., and Maat, P., 1993, The potential response of eolian sands to greenhouse warming and precipitation reduction on the Great Plains of the USA: Journal of Arid Environments, v. 25, no. 4, p. 351-361, https://doi.org/10.1006/jare.1993.1068.
  343. Munroe, J. S., Norris, E. D., Olson, P. M., Ryan, P. C., Tappa, M. J., and Beard, B. L., 2020, Quantifying the contribution of dust to alpine soils in the periglacial zone of the Uinta Mountains, Utah, USA: Geoderma, v. 378, p. 17, https://doi.org/10.1016/j.geoderma.2020.114631.
  344. Munson, S. M., Belnap, J., Okin, G. S., and Schlesinger, W. H., 2011, Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau: Proceedings of the National Academy of Sciences of the United States of America, v. 108, no. 10, p. 3854-3859, https://doi.org/10.1073/pnas.1014947108.
  345. Munson, S. M., Bradford, J. B., and Hultine, K. R., 2021, An Integrative Ecological Drought Framework to Span Plant Stress to Ecosystem Transformation: Ecosystems, v. 24, no. 4, p. 739-754, https://doi.org/10.1007/s10021-020-00555-y.
  346. Musselman, K. N., Addor, N., Vano, J. A., and Molotch, N. P., 2021, Winter melt trends portend widespread declines in snow water resources: Nature Climate Change, v. 11, no. 5, p. 418-424, https://doi.org/10.1038/s41558-021-01014-9.
  347. Neary, D. G., Gottfried, G. J., and Ffolliott, P. F., Post-wildfire watershed flood responses, in Proceedings Proceedings of the 2nd International Fire Ecology Conference, Orlando, Florida2003 2003, p. 16-20.
  348. Neary, D. G., Klopatek, C. C., DeBano, L. F., and Ffolliott, P. F., 1999, Fire effects on belowground sustainability: A review and synthesis: Forest Ecology and Management, v. 122, no. 1-2, p. 51–71, https://doi.org/10.1016/S0378-1127(99)00032-8.
  349. Neilson, R. P., 1986, High-resolution climatic analysis and Southwest biogeography: Science, v. 232, no. 4746, p. 27-34, https://doi.org/10.1126/science.232.4746.27.
  350. Newman, B. D., Land, L., Phillips, F. M., and Rawling, G. C., 2016, The hydrogeology of the Sacramento Mountains and Roswell and Salt basins of New Mexico, USA: Overview of investigations on dryland groundwater systems using environmental tracers and geochemical approaches: Hydrogeology Journal, v. 24, no. 4, p. 753-756, https://doi.org/10.1007/s10040-016-1404-0.
  351. NewMexicoEPSCoR, 2013, Cochiti Canyon flash flood: Cochiti Canyon, NM, YouTube, youtube video, https://www.youtube.com/watch?v=sstvu_aRfqA.
  352. Newton, B. T., Hydrogeologist, Cadol, D., Revelle, P., and Xu, E., 2017, Continued development of the Evapotranspiration and Recharge Model: Focused recharge through ephemeral streams in New Mexico - Year 3, : NMBGMR, Final Progress Report, https://nmwrri.nmsu.edu/wp-content/SWWA/Reports/Roach/Year3/Recharge_Completion_Report_2016-2017CMMODIFIED.pdf.
  353. Niraula, R., Meixner, T., Dominguez, F., Bhattarai, N., Rodell, M., Ajami, H., Gochis, D., and Castro, C., 2017, How might recharge change under projected climate change in the Western U.S.?: Geophysical Research Letters, v. 44, no. 20, p. 10,407-410,418, https://doi.org/10.1002/2017GL075421.
  354. NMAC, 19.26.2.15. Ponds and other impoundments, (2005): https://casetext.com/regulation/new-mexico-administrative-code/title-19-natural-resources-and-wildlife/chapter-26-surface-water/part-2-administration/section-1926215-ponds-and-other-impoundments.
  355. NMAC, 19.25.12. Rules and regulations governing dam design, construction and dam safety, (2005): https://www.ose.state.nm.us/dams/RegsRules/19-25-12-NMAC-2010%202016-05-27.pdf.
  356. NMAC, 20.6.4.900. Standards for Interstate and Intrastate Surface Waters, (2020): https://www.epa.gov/sites/default/files/2014-12/documents/nmwqs.pdf.
  357. Geologic tour of New Mexico - physiographic provinces: geoinfo.nmt.edu: https://geoinfo.nmt.edu/tour/home.cfml?show=provinces. (accessed 2021).
  358. NM-DGF, 2016, State wildlife action plan for New Mexico: New Mexico Department of Game and Fish, 383 p., https://nhnm.unm.edu/sites/default/files/nonsensitive/New-Mexico-State-Wildlife-Action-Plan-SWAP-2017_Links.pdf.
  359. New Mexico Multi-Hazard Risk Portfolio: A collaboration with FEMA Region VI, NMDHSEM, and the Silver Jackets: https://edac.maps.arcgis.com/apps/MapSeries/index.html?appid=6f088cfb22504f8994c3a21661f733c9. (accessed 2021).
  360. Surface water quality standards: Env.nm.gov: https://www.env.nm.gov/surface-water-quality/. (accessed May 2021).
  361. NMED, 2021, Clean water act 303(d)/305(b) integrated report: NM Environment Department, Surface Water Quality Bureau, 72 p., https://www.env.nm.gov/surface-water-quality/wp-content/uploads/sites/25/2018/03/EPA-approved-2020-IR_012221.pdf.
  362. NMED, 2021, State of New Mexico nonpoint source management program: NM Environment Department. Surface Water Quality Bureau, 2020 Annual Report, 105 p., https://www.env.nm.gov/wp-content/uploads/sites/25/2018/02/2020-New-Mexico-NPS-Annual-Report.pdf.
  363. NM-EMNRD, 2017, New Mexico rare plant conservation strategy: New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) - Forestry Division, 93 p., https://www.emnrd.nm.gov/sfd/wp-content/uploads/sites/4/NMRarePlantConsStrategy_Final_reduced.pdf.
  364. NMSA, 11-1-1 to 11-1-7 NMSA 1978.Joint powers agreement act, (1986): https://nmwrri.nmsu.edu/wp-content/uploads/2015/publish/techrpt/tr325/appendix/San_Juan_Water_Commission_JPA.pdf.
  365. NMSA, 1978§ 72-4B.Water Data Act, (2019): https://geoinfo.nmt.edu/resources/water/data-act/home.html.
  366. New Mexico water data: Water quality: Newmexicowaterdata.org: https://newmexicowaterdata.org/. (accessed May 2021).
  367. US Climate resilience Kit: Climate.gov: https://toolkit.climate.gov/. (accessed 2021).
  368. Nolan, R. H., Collins, L., Leigh, A., Ooi, M. K. J., Curran, T. J., Fairman, T. A., Resco de Dios, V., and Bradstock, R., 2021, Limits to post-fire vegetation recovery under climate change: Plant, Cell & Environment, v. 44, no. 11, p. 3471-3489, https://doi.org/10.1111/pce.14176.
  369. Web soil survey: USDA.gov: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. (accessed May, 2021).
  370. Nusslé, S., Matthews, K. R., and Carlson, S. M., 2015, Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness: PLOS ONE, v. 10, no. 11, p. e0142426, https://doi.org/10.1371/journal.pone.0142426.
  371. NOAA Precipitation frequency data server (PFDS): NOAA.gov: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html. (accessed April 2021).
  372. NWS Probable Maximum Precipitation (PMP) documents: NOAA.gov: https://www.weather.gov/owp/hdsc_pmp. (accessed 2021).
  373. Nyhan, J., Hacker, L., Calhoun, T., and Young, D., 1978, Soil survey of Los Alamos County: Los Alamos Scientific Lab LA-6779-MS, 102 p., https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11468.pdf.
  374. O'Connor, C. D., Falk, D. A., Lynch, A. M., Swetnam, T. W., and Wilcox, C. P., 2017, Disturbance and productivity interactions mediate stability of forest composition and structure: Ecological Applications, v. 27, no. 3, p. 900-915, https://doi.org/10.1002/eap.1492.
  375. Olyphant, J., Pelletier, J. D., and Johnson, R., 2016, Topographic correlations with soil and regolith thickness from shallow-seismic refraction constraints across upland hillslopes in the Valles Caldera, New Mexico: Earth Surface Processes and Landforms, v. 41, no. 12, p. 1684-1696, https://doi.org/10.1002/esp.3941.
  376. Orem, C. A., and Pelletier, J. D., 2015, Quantifying the time scale of elevated geomorphic response following wildfires using multi-temporal LiDAR data: An example from the Las Conchas fire, Jemez Mountains, New Mexico: Geomorphology, v. 232, no. 1, p. 224-238, https://doi.org/10.1016/j.geomorph.2015.01.006.
  377. Painter, T. H., Bryant, A. C., and Skiles, S. M., 2012, Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data: Geophysical Research Letters, v. 39, no. 17, https://doi.org/10.1029/2012GL052457.
  378. Parks, S. A., and Abatzoglou, J. T., 2020, Warmer and drier fire seasons contribute to increases in area burned at high severity in Western US forests from 1985 to 2017: Geophysical Research Letters, v. 47, no. 22, https://doi.org/10.1029/2020GL089858.
  379. Parks, S. A., Dobrowski, S. Z., Shaw, J. D., and Miller, C., 2019, Living on the edge: Trailing edge forests at risk of fire-facilitated conversion to non-forest: Ecosphere, v. 10, no. 3, p. e02651, https://doi.org/10.1002/ecs2.2651.
  380. Parmenter, R., Zlotin, R., Moore, D., and Myers, O., 2018, Environmental and endogenous drivers of tree mast production and synchrony in piñon–juniper–oak woodlands of New Mexico: Ecosphere, v. 9, no. 8, p. e02360, https://doi.org/10.1002/ecs2.2360.
  381. Parrish, G. E. L., 2020, Parameterizing total available water for New Mexico soils, M.S. thesis: New Mexico Insitute of Mining and Technology, 147 p.
  382. Pascale, S., Boos, W. R., Bordoni, S., Delworth, T. L., Kapnick, S. B., Murakami, H., Vecchi, G. A., and Zhang, W., 2017, Weakening of the North American monsoon with global warming: Nature Climate Change, v. 7, no. 11, p. 806-812, https://doi.org/10.1038/nclimate3412.
  383. Pascolini-Campbell, M., Seager, R., Pinson, A., and Cook, B. I., 2017, Covariability of climate and streamflow in the Upper Rio Grande from interannual to interdecadal timescales: Journal of Hydrology: Regional Studies, v. 13, p. 58-71, https://doi.org/10.1016/j.ejrh.2017.07.007.
  384. Patton, P. C., and Schumm, S. A., 1981, Ephemeral-stream processes: Implications for studies of Quaternary valley fills: Quaternary Research, v. 15, no. 1, p. 24-43, https://doi.org/10.1016/0033-5894(81)90112-5.
  385. Paul, M. J., Coffey, R., Stamp, J., and Johnson, T., 2019, A review of water quality responses to air temperature and precipitation changes 1: Flow, water temperature, saltwater intrusion: Journal of the American Water Resources Association, v. 55, no. 4, p. 824-843, https://doi.org/10.1111/1752-1688.12710.
  386. Pausas, J. G., and Keeley, J. E., 2021, Wildfires and global change: Frontiers in Ecology and the Environment, v. 19, no. 7, p. 387-395, https://doi.org/10.1002/fee.2359.
  387. Paz, C. G., and Rodríguez, T. T., 2008, Factors of soil formation, in Chesworth, W., ed., Encyclopedia of Soil Science: Dordrecht, Springer Netherlands, p. 229-230, https://doi.org/10.1007/978-1-4020-3995-9_207.
  388. Pearson, G. A., 1950, Management of ponderosa pine in the Southwest: As developed by research and experimental practice: Department of Agriculture, Forest Service, Agriculture Monograph, 6, 218 p., https://www.fs.usda.gov/treesearch/pubs/35042.
  389. Pelletier, J. D., 2014, The linkages among hillslope-vegetation changes, elevation, and the timing of Late-Quaternary fluvial-system aggradation in the Mojave Desert revisited: Earth Surface Dynamics, v. 2, no. 2, p. 455-468, https://doi.org/10.5194/esurf-2-455-2014.
  390. Peñuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., and Sardans, J., 2017, Shifting from a fertilization-dominated to a warming-dominated period: Nature Ecology and Evolution, v. 1, no. 10, p. 1438-1445, https://doi.org/10.1038/s41559-017-0274-8.
  391. Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., and Shafroth, P. B., 2012, Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America: Global Change Biology, v. 18, no. 3, p. 821-842, https://doi.org/10.1111/j.1365-2486.2011.02588.x.
  392. Persico, L., McFadden, L., Frechette, J., and Meyer, G., 2011, Rock type and dust influx control accretionary soil development on hillslopes in the Sandia Mountains, New Mexico, USA: Quaternary Research v. 76, p. 411-416, https://doi.org/10.1016/j.yqres.2011.08.005.
  393. Persico, L., McFadden, L., and McAuliffe, J., Aspect and climatic controls on ecogeomorphic relationships and landscape evolution in the Mojave Desert, in Proceedings GSA Annual Meeting, Denver, Colorado, USA, 2016, https://doi.org/10.1130/abs/2016AM-287969.
  394. Persico, L., McFadden, L., and McAuliffe, J., 2019, Climatic controls on the timing of hillslope soil formation and erosion in the Eastern Mojave Desert, GSA Annual Meeting: Phoenix, Arizona, USA, https://doi.org/10.1130/abs/2019AM-339463.
  395. Persico, L. P., McFadden, L. D., McAuliffe, J. R., Rittenour, T. M., Stahlecker, T. E., Dunn, S. B., and Brody, S. A. T., 2021, Late Quaternary geochronologic record of soil formation and erosion: Effects of climate change on Mojave Desert hillslopes (Nevada, USA): Geology, https://doi.org/10.1130/G49270.1.
  396. Peters, D., Herrick, J., Monger, C., and Huang, H., 2010, Soil-vegetation-climate interactions in arid landscapes: Effects of the North American monsoon on grass recruitment: Journal of Arid Environments, v. 74, https://doi.org/10.1016/j.jaridenv.2009.09.015.
  397. Peterson, K., Hanson, A., Roach, J. L., Randall, J., and Thomson, B., 2019, A dynamic statewide water budget for New Mexico: Phase III ‒ Future scenario implementation: New Mexico Water Resources Research Institute, Technical Completion Report No. 380, 200 p., https://nmwrri.nmsu.edu/tr-380/.
  398. Peterson, T. J., Saft, M., Peel, M. C., and John, A., 2021, Watersheds may not recover from drought: Science, v. 372, no. 6543, p. 745-749, http://dx.doi.org/10.1126/science.abd5085.
  399. Petrie, M. D., Peters, D. P. C., Yao, J., Blair, J. M., Burruss, N. D., Collins, S. L., Derner, J. D., Gherardi, L. A., Hendrickson, J. R., Sala, O. E., et al., 2018, Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods: Global Change Biology, v. 24, no. 5, p. 1935-1951, https://doi.org/10.1111/gcb.14024.
  400. Phillips, F. M., Hall, G. E., and Black, M. E., 2011, Reining in the Rio Grande : people, land, and water: Albuquerque, University of New Mexico Press, p. 264, https://unmpress.com/books/reining-rio-grande/9780826349446.
  401. Phillips, W. M., McDonald, E. V., Reneau, S. L., and Jane, P., 1998, Dating soils and alluvium with cosmogenic 21Ne depth profiles: Case studies from the Pajarito Plateau, New Mexico, USA: Earth and Planetary Science Letters, v. 160, no. 1, p. 209-223, https://doi.org/10.1016/S0012-821X(98)00076-4.
  402. Polly, K., 2019, Maintaining Carlsbad irrigation district, Irrigation Leader, Volume 10, https://issuu.com/waterstrategies/docs/sept_il_2019hq.
  403. PRISM Climate Group at Oregon State University: Oregonstate.edu: https://prism.oregonstate.edu/. (accessed 2021).
  404. Pritchard, S. G., 2011, Soil organisms and global climate change: Plant Pathology, v. 60, no. 1, p. 82-99, https://doi.org/10.1111/j.1365-3059.2010.02405.x.
  405. Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G., and Romme, W. H., 2008, Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions: BioScience, v. 58, no. 6, p. 501-517, https://www.fs.usda.gov/treesearch/pubs/32816.
  406. Rasmussen, C., McGuire, L., Dhakal, P., and Pelletier, J. D., 2017, Coevolution of soil and topography across a semiarid cinder cone chronosequence: CATENA, v. 156, p. 338-352, https://doi.org/10.1016/j.catena.2017.04.025.
  407. Rawling, G. C., 2016, A hydrogeologic investigation of Curry and Roosevelt counties, New Mexico: New Mexico Bureau of Geology Mineral Resources, Open-file Report 580, 47 p., https://geoinfo.nmt.edu/resources/water/projects/home.cfml?id=27.
  408. Rawling, G. C., and Newton, B. T., 2016, Quantity and location of groundwater recharge in the Sacramento Mountains, South-Central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin: Hydrogeology Journal, v. 24, no. 4, p. 757-786, https://doi.org/10.1007/s10040-016-1399-6.
  409. Rawling, G. C., and Rinehart, A. J., 2018, Lifetime projections for the High Plains Aquifer in east-central New Mexico: NMBGMR, NMBGMR Bulletin, 162 50 p., https://geoinfo.nmt.edu/staff/detail.cfml?name=rawling&show=publications.
  410. Rea, P., Ma, L., Gill, T. E., Gardea-Torresdey, J., Tamez, C., and Jin, L., 2020, Tracing gypsiferous White Sands aerosols in the shallow critical zone in the Northern Sacramento Mountains, New Mexico using Sr/Ca and 87Sr/86Sr ratios: Geoderma, v. 372, p. 21, https://doi.org/10.1016/j.geoderma.2020.114387.
  411. Reale, J. K., Van Horn, D. J., Condon, K. E., and Dahm, C. N., 2015, The effects of catastrophic wildfire on water quality along a river continuum: Freshwater Science, v. 34, no. 4, https://doi.org/10.1086/684001.
  412. Reclamation), R. B. o., SECURE Water Act Section 9503(c) - Reclamation Climate Change and Water, (2011): https://www.usbr.gov/climate/secure/docs/2011secure/2011SECUREWaterReport.pdf.
  413. Reclamation, 2014, Downscaled CMIP3 and CMIP5 climate and hydrology projections: Release of hydrology projections, comparison with preceding information, and summary of user needs: U.S. Department of the Interior, Bureau of Reclamation, 110 p., https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf.
  414. Reclamation, 2015, West-wide climate risk assessments: Irrigation demand and reservoir evaporation projections: U.S. Dept. of the Interior, Technical Memorandum, 68-68210-2014-01, 196 p., https://www.usbr.gov/watersmart/baseline/docs/irrigationdemand/irrigationdemands.pdf.
  415. Reclamation, 2016, Historical and future irrigation water requirements for select reclamation project areas Western United States, Reclamation: Managing Water in the West, https://www.usbr.gov/watersmart/baseline/docs/historicalandfutureirrigationwaterrequirements.pdf.
  416. Reclamation, 2021, Reclamation SECURE Water Act, 2021, Section 9503(c) Reclamation Climate Change and Water, United States Congress, https://www.usbr.gov/climate/secure/docs/2021secure/2021SECUREReport.pdf.
  417. Records, R. M., Arabi, M., Fassnacht, S. R., Duffy, W. G., Ahmadi, M., and Hegewisch, K. C., 2014, Climate change and wetland loss impacts on a western river's water quality: Hydrology and Earth System Sciences, v. 18, p. 4509-4527, https://doi.org/10.5194/hess-18-4509-2014.
  418. Redsteer, M. H., Kelley, K. B., Francis, H., and Block, D., 2018, Accounts from tribal elders: Increasing vulnerability of the Navajo people to drought and climate change in the Southwestern United States, Indigenous Knowledge for Climate Change Assessment and Adaptation, Cambridge University Press, p. 171-187, https://doi.org/10.1017/9781316481066.013.
  419. Reheis, M. C., Reynolds, R. L., Goldstein, H., Roberts, H. M., Yount, J. C., Axford, Y., Cummings, L. S., and Shearin, N., 2005, Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, Southeastern Utah: Geological Society of America Bulletin, v. 117, no. 7-8, p. 1051-1069, https://doi.org/10.1130/B25631.1.
  420. Reich, P. B., Hobbie, S. E., Lee, T. D., and Pastore, M. A., 2018, Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment: Science, v. 360, no. 6386, p. 317-320, https://www.science.org/doi/abs/10.1126/science.aas9313
  421. Rempe, D. M., and Dietrich, W. E., 2018, Direct observations of rock moisture, a hidden component of the hydrologic cycle: Proceedings of the National Academy of Sciences, v. 115, no. 11, p. 2664-2669, https://doi.org/10.1073/pnas.1800141115.
  422. Reneau, S. L., McDonald, E. V., Gardner, J. N., Longmire, P. A., Kolbe, T. R., Carney, J. S., and Watt, P. M., 1996, Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to Late Quaternary climatic changes: Los Alamos National Lab, Technical Report, LA-UR-96-582, ON: DE96009188, 29 p., https://doi.org/10.2172/215311.
  423. Rengers, F. K., McGuire, L. A., Coe, J. A., Kean, J. W., Baum, R. L., Staley, D. M., and Godt, J. W., 2016, The influence of vegetation on debris-flow initiation during extreme rainfall in the Northern Colorado Front Range: Geology, v. 44, no. 10, p. 823–826, https://doi.org/10.1130/G38096.1.
  424. Rengers, F. K., McGuire, L. A., Oakley, N. S., Kean, J. W., Staley, D. M., and Tang, H., 2020, Landslides after wildfire: Initiation, magnitude, and mobility: Landslides, v. 17, p. 2631-2641, https://doi.org/10.1007/s10346-020-01506-3.
  425. Rich, L., 1962, Erosion and sediment movement following a wildfire in a Ponderosa Pine forest of Central Arizona: US Department of Agriculture Forest Service Research Note 76, https://nmt.on.worldcat.org/v2/oclc/2992839.
  426. Richter, D. D., Eppes, M.-C., Austin, J. C., Bacon, A. R., Billings, S. A., Brecheisen, Z., Ferguson, T. A., Markewitz, D., Pachon, J., Schroeder, P. A., et al., 2020, Soil production and the soil geomorphology legacy of Grove Karl Gilbert: Soil Science Society of America Journal, v. 84, no. 1, p. 1-20, https://doi.org/10.1002/saj2.20030.
  427. Risley, J., Stonewall, A. J., and Haluska, T., 2008, Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon, Scientific Investigations Report 2008-5126, https://pubs.usgs.gov/sir/2008/5126/.
  428. Robichaud, P., Wagenbrenner, J., Brown, R., Wohlgemuth, P., and Beyers, J., 2008, Evaluating the effectiveness of contour-felled log erosion barriers as a post-fire runoff and erosion mitigation treatment in the Western United States: International Journal of Wildland Fire, v. 17, no. 2, p. 255–273, https://doi.org/10.1071/WF07032.
  429. Robichaud, P. R., Beyers, J. L., and Neary, D. G., 2000, Evaluating the effectiveness of postfire rehabilitation treatments: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station RMRS-GTR-63, https://permanent.fdlp.gov/lps79584/rmrs_gtr063.pdf.
  430. Rodman, K. C., Veblen, T. T., Battaglia, M. A., Chambers, M. E., Fornwalt, P. J., Holden, Z. A., Kolb, T. E., Ouzts, J. R., and Rother, M. T., 2020, A changing climate is snuffing out post-fire recovery in montane forests: Global Ecology and Biogeography, v. 29, no. 11, p. 2039-2051, https://doi.org/10.1111/geb.13174.
  431. Rollins, M., Swetnam, T., and Morgan, P., 2000, Twentieth-century fire patterns in the Selway-Bitterroot Wilderness Area, Idaho/Montana, and the Gila/Aldo Leopold Wilderness Complex, New Mexico, in Proceedings Wilderness science in a time of change conference, Ogden, UT, 2000, Volume Proceedings RMRS-P-15-VOL-5: Missoula, MT, Department of Agriculture, Forest Service, Rocky Mountain Research Station, p. 283-287, https://www.fs.usda.gov/treesearch/pubs/21875.
  432. Romme, W. H., Allen, C. D., Bailey, J. D., Baker, W. L., Bestelmeyer, B. T., Brown, P. M., Eisenhart, K. S., Floyd, M. L., Huffman, D. W., Jacobs, B. F., et al., 2009, Historical and modern disturbance regimes, stand structures, and landscape dynamics in Piñon: Juniper vegetation of the Western United States: Rangeland Ecology & Management, v. 62, no. 3, p. 203-222, https://doi.org/10.2111/08-188R1.1.
  433. Rood, S. B., Ball, D. J., Gill, K. M., Kaluthota, S., Letts, M. G., and Pearce, D. W., 2013, Hydrologic linkages between a climate oscillation, river flows, growth, and wood Δ13C of male and female cottonwood trees: Plant, cell & environment, v. 36, no. 5, p. 984-993, https://doi.org/10.1111/pce.12031.
  434. Roos, C. I., Swetnam, T. W., Ferguson, T. J., Liebmann, M. J., Loehman, R. A., Welch, J. R., Margolis, E. Q., Guiterman, C. H., Hockaday, W. C., Aiuvalasit, M. J., et al., 2021, Native American fire management at an ancient wildland-urban interface in the Southwest United States: Proceedings of the National Academy of Sciences of the United States of America, v. 118, no. 4, https://doi.org/10.1073/pnas.2018733118.
  435. Rosenberg, E. A., Keys, P. W., Booth, D. B., Hartley, D., Burkey, J., Steinemann, A. C., and Lettenmaier, D. P., 2010, Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington state: Climatic Change, v. 102, no. 1-2, p. 319-349, https://doi.org/10.1007/s10584-010-9847-0.
  436. Rothman, H., 1992, On rims & ridges : The Los Alamos area since 1880: Lincoln, University of Nebraska Press, https://books.google.com/books/about/On_Rims_Ridges.html?id=riV6AAAAMAAJ.
  437. Routson, C. C., Woodhouse, C. A., and Overpeck, J. T., 2011, Second century megadrought in the Rio Grande headwaters, Colorado: How unusual was medieval drought?: Geophysical Research Letters, v. 38, no. 22, https://doi.org/10.1029/2011GL050015.
  438. Rudgers, J. A., Chung, Y. A., Maurer, G. E., Moore, D. I., Muldavin, E. H., Litvak, M. E., and Collins, S. L., 2018, Climate sensitivity functions and net primary production: A framework for incorporating climate mean and variability: Ecology, v. 99, no. 3, p. 576-582, https://doi.org/10.1002/ecy.2136.
  439. Rumsey, C. A., Miller, M. P., and Sexstone, G. A., 2020, Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015: Journal of Hydrology, v. 584, p. 124715, https://doi.org/10.1016/j.jhydrol.2020.124715.
  440. Salas, J. D., Anderson, M. L., Papalexiou, S. M., and Frances, F., 2020, PMP and climate variability and change: A review: Journal of Hydrologic Engineering, v. 25, no. 12, p. 16, https://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0002003.
  441. Salzer, M. W., and Kipfmueller, K. F., 2005, Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, U.S.A: Climatic Change, v. 70, no. 3, p. 465-487, https://doi.org/10.1007/s10584-005-5922-3.
  442. Sandvig, R. M., and Phillips, F. M., 2006, Ecohydrological controls on soil moisture fluxes in arid to semiarid vadose zones: Water Resources Research, v. 42, no. 8, https://doi.org/10.1029/2005WR004644.
  443. Sankey, J. B., Kreitler, J., Hawbaker, T. J., McVay, J. L., Miller, M. E., Mueller, E. R., Vaillant, N. M., Lowe, S. E., and Sankey, T. T., 2017, Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds: Geophysical Research Letters, v. 44, no. 17, p. 8884-8892, https://doi.org/10.1002/2017GL073979.
  444. Scanlon, B. R., Zhang, Z., Reedy, R. C., Pool, D. R., Save, H., Long, D., Chen, J., Wolock, D. M., Conway, B. D., and Winester, D., 2015, Hydrologic implications of GRACE satellite data in the Colorado River Basin: Water Resources Research, v. 51, p. 9891-9903, https://doi.org/10.1002/2015WR018090.
  445. Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., van Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., et al., 2018, Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data: Proceedings of the National Academy of Sciences, v. 115, no. 6, p. 10, https://doi.org/10.1073/pnas.1704665115.
  446. Schlaepfer, D. R., Bradford, J. B., Lauenroth, W. K., Munson, S. M., Tietjen, B., Hall, S. A., Wilson, S. D., Duniway, M. C., Jia, G., Pyke, D. A., et al., 2017, Climate change reduces extent of temperate drylands and intensifies drought in deep soils: Nature Communications, v. 8, no. 1, p. 14196, https://doi.org/10.1038/ncomms14196.
  447. Schreiner-McGraw, A. P., Vivoni, E. R., Ajami, H., Sala, O. E., Throop, H. L., and Peters, D. P. C., 2020, Woody Plant Encroachment has a Larger Impact than Climate Change on Dryland Water Budgets: Scientific Reports, v. 10, no. 1, p. 8112, https://doi.org/10.1038/s41598-020-65094-x.
  448. Schumm, S. A., 1973, Geomorphic thresholds and complex response of drainage systems: Fluvial geomorphology, v. 6, p. 69–85, http://wpg.forestry.oregonstate.edu/sites/wpg/files/seminars/Schumm%201973.pdf.
  449. Schumm, S. A., and Hadley, R. F., 1957, Arroyos and the semiarid cycle of erosion [Wyoming and New Mexico]: American Journal of Science, v. 255, no. 3, p. 161–174, https://doi.org/10.2475/ajs.255.3.161.
  450. Schumm, S. A., and Parker, R. S., 1973, Implications of complex response of drainage systems for Quaternary alluvial stratigraphy: Nature Physical Science, v. 243, no. 128, p. 99-100.
  451. Schuurman, G. W., Hawkins-Hoffman, C., Cole, D. N., Lawrence, D. J., Morton, J., M. , Magness, D. R., Cravens, A. E., Covington, S., O'Malley, R., and Fisichelli, N. A., 2020, Resist-accept-direct (RAD)- A framework for the 21st-century natural resource manager: National Park Service, Natural Resource Report NPS/NRSS/CCRP/NRR—2020/ 2213, https://irma.nps.gov/DataStore/Reference/Profile/2283597.
  452. Scuderi, L. A., McFadden, L. D., and McAuliffe, J. R., 2008, Dendrogeomorphically derived slope response to decadal and centennial scale climate variability: Black Mesa, Arizona, USA: Natural Hazards Earth Systems Science, v. 8, no. 4, p. 869-880, https://doi.org/10.5194/nhess-8-869-2008.
  453. Scurlock, D., 1998, From the Rio to the Sierra : An environmental history of the Middle Rio Grande Basin, Fort Collins, CO U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, General Technical Report, USDA Forest Service ; RMRS-GTR-5, https://www.fs.fed.us/rm/pubs/rmrs_gtr005.pdf.
  454. Seager, R., Lis, N., Feldman, J., Ting, M., Williams, A. P., Nakamura, J., Liu, H., and Henderson, N., 2017, Whither the 100th meridian? The once and future physical and human geography of America’s arid–humid divide. Part I: The story so far: Earth Interactions, v. 22, p. 22 https://doi.org/10.1175/EI-D-17-0011.1.
  455. Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., et al., 2007, Model projections of an imminent transition to a more arid climate in Southwestern North America: Science, v. 316, no. 5828, p. 1181-1184, https://www.jstor.org/stable/20036337.
  456. Seckler, D., 1996, The new era of water resources management: From “dry” to “wet” water savings: International Irrigation Management Institute (IIMI), IIMI Research Report 1, https://doi.org/10.3910/2009.003.
  457. Seduto, P., Hsiao, T. C., Fereres, E., and Raes, D., 2012, Crop yield response to water, Rome, Italy, FAO, FAO Irrigation and Drainage Paper, v. 0254-5284, http://www.fao.org/documents/card/en/c/c355da16-217c-555b-acbc-505d87bade00/.
  458. Seibert, J., McDonnell, J. J., and Woodsmith, R. D., 2010, Effects of wildfire on catchment runoff response: A modelling approach to detect changes in snow-dominated forested catchments: Hydrology Research, v. 41, no. 5, p. 378, https://doi.org/10.2166/nh.2010.036.
  459. Simon, A., 1989, A model of channel response in disturbed alluvial channels: Earth surface processes and landforms, v. 14, no. 1, p. 11-26, https://doi.org/10.1002/esp.3290140103.
  460. Sinokrot, B. A., Stefan, H. G., McCormick, J. H., and Eaton, J. G., 1995, Modeling of climate change effects on stream temperatures and fish habitats below dams and near groundwater inputs: Climatic Change, v. 30, p. 181-200, https://doi.org/10.1007/BF01091841.
  461. Slater, L. J., and Villarini, G., 2016, Recent trends in U.S. flood risk: Geophysical Research Letters, v. 43, p. 9, https://doi.org/10.1002/2016GL071199.
  462. Small, E. E., 2005, Climatic controls on diffuse groundwater recharge in arid and semiarid environments: Water Resources Research, v. 41, p. 18, https://doi.org/10.1029/2004WR003193.
  463. Sohn, M. F., Mahan, S. A., Knott, J. R., and Bowman, D. D., 2007, Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front: Quaternary International, v. 166, no. 1, p. 49-60, https://doi.org/10.1016/j.quaint.2007.01.002.
  464. Spaulding, W. G., 1990, Vegetational and climatic development of the Mojave Desert: The last glacial maximum to the present, in Betancourt, J. L., Van Devender, T. R., and Martin, P. S., eds., Packrat middens : The last 40,000 years of biotic change: Tucson, Arizona, University of Arizona Press, p. 166-199, https://nmt.on.worldcat.org/v2/oclc/942788944.
  465. Staley, D. M., Kean, J. W., Cannon, S. H., Schmidt, K. M., and Laber, J. L., 2012, Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California: Landslides, v. 10, no. 5, p. 547-562, https://doi.org/10.1007/s10346-012-0341-9.
  466. Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M., 2017, Prediction of spatially explicit rainfall intensity–Duration thresholds for post-fire debris-flow generation in the Western United States: Geomorphology, v. 278, no. 1, p. 149-162, https://doi.org/10.1016/j.geomorph.2016.10.019.
  467. Staley, S. E., Fawcett, P. J., Anderson, R. S., and Jiménez-Moreno, G., 2021, Sedimentology and stratigraphy of core STL14: An Early Pleistocene-to-present paleoclimate archive for the American Southwest from Stoneman Lake, Arizona, USA https://digitalrepository.unm.edu/eps_etds/249/ (in press).
  468. Stephens, S. L., Collins, B. M., Fettig, C. J., Finney, M. A., Hoffman, C. M., Knapp, E. E., North, M. P., Safford, H., and Wayman, R. B., 2018, Drought, tree mortality, and wildfire in forests adapted to frequent fire: BioScience, v. 68, no. 2, p. 77-88, https://doi.org/10.1093/biosci/bix146.
  469. Stevens, J. T., 2017, Scale-dependent effects of post-fire canopy cover on snowpack depth in montane coniferous forests: Ecological Applications v. 27, no. 6, p. 1888-1900, https://doi.org/10.1002/eap.1575.
  470. Stewart, I. T., Cayan, D. R., and Dettinger, M. D., 2005, Changes toward earlier streamflow timing across Western North America: Journal of climate, v. 18, no. 8, p. 1136–1155, https://doi.org/10.1175/JCLI3321.1.
  471. Swanson, S. R., Wyman, S., and Evans, C., 2015, Practical Grazing Management to Meet Riparian Objectives: Journal of Rangeland Applications, v. 2, https://thejra.nkn.uidaho.edu/index.php/jra/article/view/20.
  472. Swetnam, T. W., Allen, C. D., and Betancourt, J. L., 1999, Applied historical ecology: Using the past to manage for the future: Ecological Applications, v. 9, no. 4, p. 1189-1206, https://doi.org/10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2.
  473. Swetnam, T. W., and Betancourt, J. L., 1998, Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest: Journal of Climate, v. 11, p. 3128, https://doi.org/10.1175/1520-0442(1998)011<3128:Mdaert>2.0.Co;2.
  474. Swetnam, T. W., Farella, J., Roos, C. I., Liebmann, M. J., Falk, D. A., and Allen, C. D., 2016, Multiscale perspectives of fire, climate and humans in Western North America and the Jemez Mountains, USA: Philosophical Transactions: Biological Sciences, v. 371, no. 1696, p. 1-13, https://doi.org/10.1098/rstb.2015.0168.
  475. Swetnam, T. W., and Lynch, A. M., 1993, Multicentury, regional-scale patterns of Western Spruce Budworm outbreaks: Ecological Monographs, v. 63, no. 4, p. 399-424, https://doi.org/10.2307/2937153.
  476. Tabari, H., 2020, Climate change impact on flood and extreme precipitation increases with water availability: Scientific Reports, v. 10, no. 1, https://doi.org/10.1038/s41598-020-70816-2.
  477. Tercek, M. T., Thoma, D., Gross, J. E., Sherrill, K., Kagone, S., and Senay, G., 2021, Historical changes in plant water use and need in the continental United States: PLOS ONE, v. 16, no. 9, p. e0256586, https://doi.org/10.1371/journal.pone.0256586.
  478. Terracon, John Shomaker and Associates, I., Livingston, A., LLC, INC , Zia Engineering and Environmental, I., and Southwest, S., 2003, The New Mexico lower Rio Grande regional water plan: Prepared for the Lower Rio Grande Water Users Organization, https://www.ose.state.nm.us/Planning/RWP/11_LRG/1999/LOWER-RIO-GRANDE-REGIONAL-WATER-PLAN.pdf.
  479. Texas v. New Mexico, 485 U.S. 388 (1988): https://www.ose.state.nm.us/Compacts/Pecos/PDF/pecos_decree.pdf.
  480. Thibault, J. R., Cleverly, J. R., and Dahm, C. N., 2017, Long-term water table monitoring of Rio Grande riparian ecosystems for restoration potential amid hydroclimatic challenges: Environmental Management, v. 60, no. 6, p. 1101-1115, https://doi.org/10.1007/s00267-017-0945-x.
  481. Thibault, J. R., Moyer, D. L., Dahm, C. N., Valett, H. M., and Marshall, M. C., 1999, Effects of livestock grazing on morphology, hydrology and nutrient retention in four riparian/stream ecosystems, New Mexico, USA. In: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Finch, Deborah M.; Whitney, Jeffrey C.; Kelly, Jeffrey, F.; Loftin, Samuel R. Rio Grande ecosystems: linking land, water, and people: toward a sustainable future for the Middle Rio Grande basin: June 2-5, 1998, Albuquerque, NM. Proc. RMRS-P-7. Ogden, UT, 123-128 p., https://www.fs.fed.us/rm/pubs/rmrs_p007/rmrs_p007_123_128.pdf.
  482. Thomas, H. E., 1963, General summary of effects of the drought in the Southwest: Chapter H in Drought in the Southwest, 1942-56, Professional Paper 372H, 33 p., https://doi.org/10.3133/pp372H.
  483. Thomson, B., Roach, J., Llewellyn, D., Shafike, N., Jordan, D., and Hebard, E., 2014, Middle Rio Grande water budget - Draft: (personal communication).
  484. Thomson, B. M., 2021, Stormwater capture in the arid southwest: Flood protection versus water supply: Journal of Water Resources Planning and Management, v. 147, no. 5, p. 8, https://doi.org/10.1061/(asce)wr.1943-5452.0001346.
  485. Thomson, B. M., and Ali, A.-M., 2008, Water resources assessment of the Sapello River: University of New Mexico, Water Resources Program Summer Field Camp Report, 46 p., https://digitalrepository.unm.edu/wr_fmr/2.
  486. Tidwell, V. C., Moreland, B. D., Zemlick, K. M., Roberts, B. L., Passell, H. D., Jensen, D., Forsgren, C., Sehlke, G., Cook, M. A., King, C. W., et al., 2014, Mapping water availability, projected use and cost in the Western United States: Environmental Research Letters, v. 9, no. 6, p. 064009, https://doi.org/10.1088/1748-9326/9/6/064009.
  487. Tillery, A. C., Fawcett, P., Mcfadden, L., Scuderi, L., and McAuliffe, J., 2003, Late Holocene behavior of small drainage basins on the Colorado Plateau: Influences of lithology, basin form, and climate change, New Mexico Geological Society 54th Field Conference, Volume 54, Guidebook, p. 197-207, https://nmgs.nmt.edu/publications/guidebooks/downloads/54/54_p0197_p0207.pdf.
  488. Tillery, A. C., and Haas, J. R., 2016, Potential postwildfire debris-flow hazards - A prewildfire evaluation for the Jemez Mountains, North-Central New Mexico: U.S. Geological Survey, Scientific Investigations Report 2016-5101, 38 p., https://doi.org/10.3133/sir20165101.
  489. Tillery, A. C., Haas, J. R., Miller, L. W., Scott, J. H., and Thompson, M. P., 2014, Potential postwildfire debris-flow hazards - A prewildfire evaluation for the Sandia and Manzano Mountains and surrounding areas, Central New Mexico: U.S. Geological Survey, Scientific Investigations Report 2014-5161, 34 p., https://doi.org/10.3133/sir20145161.
  490. Tillery, A. C., and Matherne, A. M., 2013, Postwildfire debris-flow hazard assessment of the area burned by the 2012 Little Bear Fire, South-Central New Mexico: U.S. Geological Survey, Open-File Report 2013-1108, 25 p., https://doi.org/10.3133/ofr20131108.
  491. Tillery, A. C., and Rengers, F. K., 2020, Controls on debris-flow initiation on burned and unburned hillslopes during an exceptional rainstorm in Southern New Mexico, USA: Earth Surface Processes and Landforms, v. 45, no. 4, p. 1051–1066, https://doi.org/10.1002/esp.4761.
  492. Tillery, A. C., Rengers, F. K., and Mitchell, A. C., 2019, Post-wildfire debris flow and rainfall data, Whitewater-Baldy complex fire, southwestern New Mexico, 2013: U.S. Geological Survey, U.S. Geological Survey data release, https://doi.org/10.5066/P90C629B.
  493. Touchan, R., Woodhouse, C. A., Meko, D. M., and Allen, C., 2011, Millennial precipitation reconstruction for the Jemez Mountains, New Mexico, reveals changingb drought signal: International Journal of Climatology, v. 31, no. 6, p. 896-906, https://doi.org/10.1002/joc.2117.
  494. Towler, E., 2021, Interpretation of extreme precipitation study: (personal communication).
  495. Towler, E., Llewellyn, D., Prein, A., and Gilleland, E., 2020, Extreme-value analysis for the characterization of extremes in water resources: A generalized workflow and case study on New Mexico monsoon precipitation: Weather and Climate Extremes, v. 29, p. 11, https://doi.org/10.1016/j.wace.2020.100260.
  496. Townsend, N. T., and Gutzler, D. S., 2020, Adaptation of climate model projections of streamflow to account for upstream anthropogenic impairments: Journal of the American Water Resources Association, v. 56, no. 4, p. 586-598, https://doi.org/10.1111/1752-1688.12851.
  497. Triepke, F. J., Muldavin, E. H., and Wahlberg, M. M., 2019, Using climate projections to assess ecosystem vulnerability at scales relevant to managers: Ecosphere, v. 10, no. 9, p. e02854, https://doi.org/10.1002/ecs2.2854.
  498. Turner, M. G., Calder, W. J., Cumming, G. S., Hughes, T. P., Jentsch, A., LaDeau, S. L., Lenton, T. M., Shuman, B. N., Turetsky, M. R., Ratajczak, Z., et al., 2020, Climate change, ecosystems and abrupt change: science priorities: Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 375, no. 1794, p. 20190105, https://doi.org/10.1098/rstb.2019.0105.
  499. Turral, H., Burke, J., and Faurès, J.-M., 2011, Climate change, water and food security, Rome, Food and agriculture organization of the United nations (FAO), 174 p, https://library.wur.nl/WebQuery/titel/1966849.
  500. Udall, B., and Overpeck, J., 2017, The twenty-first century Colorado River hot drought and implications for the future: Water Resources Research, v. 53, no. 3, p. 2404-2418, https://doi.org/10.1002/2016WR019638.
  501. National inventory of dams: Army.mil: https://nid.sec.usace.army.mil/ords/f?p=105:1. (accessed May, 2021).
  502. USACE, 2020, Rio Grande Basin: 2019 US Army Corps of Engineers, Water Management and Civil Works Report 24 p., https://www.ose.state.nm.us/.
  503. USACEdraft, 2017, Middle Rio Grande flood protection Bernalillo to Belen, New Mexico: Mountain View, Isleta and Belen units integrated general reevaluation report and supplemental environmental impact statement: (personal communication).
  504. Natural resources conservation service: Usda.gov: https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/. (accessed.
  505. USDA, 2014, Santa Fe municipal watershed Pecos Wilderness prescribed burn project - Final environmental assessment: United States Department of Agriculture, Forest Service, Southwestern Region, https://www.fs.usda.gov/nfs/11558/www/nepa/81473_FSPLT3_1658617.pdf.
  506. USGCRP, 2014, Climate change impacts in the United States: The third national climate assessment: U.S. Global Change Research Program, 841 p., http://nca2014.globalchange.gov.
  507. USGCRP, 2017, Climate science special report: Fourth national climate assessment: U.S. Global Change Research Program, Volume I, 470 p., https://doi.org/10.7930/J0J964J6.
  508. USGCRP, 2018, Impacts, risks, and adaptation in the United States: Fourth national climate assessment: U.S. Global Change Research Program Volume II, 1515 p., https://doi.org/10.7930/NCA4.2018.
  509. Water quality after wildfire: USGS.gov: https://www.usgs.gov/mission-areas/water-resources/science/water-quality-after-wildfire. (accessed June 2021).
  510. Van der Hoven, S. J., and Quade, J., 2002, Tracing spatial and temporal variations in the sources of calcium in pedogenic carbonates in a semiarid environment: Geoderma, v. 108, no. 3, p. 259-276, https://doi.org/10.1016/S0016-7061(02)00134-9.
  511. Varani, H. A., 2021, Factors affecting a riparian cottonwood stand die-off along the Rio Grande: Pueblo of Santa Ana, New Mexico, USA, M.S. thesis: University of New Mexico.
  512. Varney, R. M., Chadburn, S. E., Friedlingstein, P., Burke, E. J., Koven, C. D., Hugelius, G., and Cox, P. M., 2020, A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming: Nature Communications, v. 11, no. 1, p. 5544, https://doi.org/10.1038/s41467-020-19208-8.
  513. Veenhuis, J. E., and Bowman, P. R., 2002, Effects of wildfire on the hydrology of Frijoles and Capulin canyons in and near Bandelier National Monument, New Mexico: New Mexico, US Geological Survey, Fact Sheet, p. 4, https://doi.org/10.3133/fs14102.
  514. Vieira, D. C. S., Fernandez, C., Vega, J. A., and Keizer, J. J., 2015, Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data: Journal of Hydrology, v. 523, p. 452-464, https://doi.org/10.1016/j.jhydrol.2015.01.071.
  515. Vivoni, E. R., Aragón, C. A., Malczynski, L., and Tidwell, V. C., 2009, Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change: Hydrology and Earth System Sciences, v. 13, no. 6, p. 715-733, https://doi.org/10.5194/hess-13-715-2009.
  516. Wahlberg, M. M., Triepke, F. J., and Rose, A., 2021, Riparian-aquatic climate change vulnerability assessment – Executive report: USDA Forest Service, Southwestern Region, Regional Office, Albuquerque NM, 20 p., https://www.fs.fed.us/r3/gis/gisdata/R3_ARCCVA%20Executive%20Report.pdf
  517. Wainwright, J., Parsons, A. J., and Abrahams, A. D., 2000, Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico: Hydrological Processes, v. 14, no. 16-17, p. 2921-2943, https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7.
  518. Watkins, A., Gutzler, D., Garfin, G., Zak, B., Crawford, B., Diffenbaugh, N., Stover, D., Funk, A., and Edwards, A., The impact of climate change on New Mexico’s water supply and ability to manage water resources, in Proceedings UCOWR Conference2006, New Mexico Office of the State Engineer/Interstate Stream Commission, https://opensiuc.lib.siu.edu/ucowrconfs_2006/7/.
  519. Wawrzyniec, T., McFadden, L., Ellwein, A., Meyer, G., Scuderi, L., McAuliffe, J., and Fawcett, P., 2007, Chronotopographic analysis directly from point-cloud data: A method for detecting small, seasonal hillslope change, Black Mesa Escarpment, NE Arizona: Geosphere, v. 3, p. 550, https://doi.org/10.1130/GES00110.1.
  520. Weiss, J. L., Castro, C. L., and Overpeck, J. T., 2009, Distinguishing pronounced droughts in the Southwestern United States: Seasonality and effects of warmer temperatures: Journal of Climate, v. 22, no. 22, p. 5918-5932, https://doi.org/10.1175/2009JCLI2905.1.
  521. Wells, S. G., McFadden, L. D., and Schultz, J. D., 1990, Eolian landscape evolution and soil formation in the Chaco Dune Field, Southern Colorado Plateau, New Mexico: Geomorphology, v. 3, no. 3, p. 517-546, https://doi.org/10.1016/0169-555X(90)90019-M.
  522. Wentz, D. A., Brigham, M. E., Chasar, L. C., Lutz, M. A., and Krabbenhoft, D. P., 2014, Mercury in the nation’s streams - Levels, trends, and implications: U.S. Geological Survey, The quality of our nation's waters Circular 1395, 1395, 90 p., http://dx.doi.org/10.3133/cir1395.
  523. Westerling, A., Brown, T., Schoennagel, T., Swetnam, T., Turner, M., and Veblen, T., Briefing: Climate and wildfire in western US forests, in Proceedings In: Sample, V. Alaric; Bixler, R. Patrick, eds. Forest conservation and management in the Anthropocene: Conference proceedings. Proceedings. RMRS-P-71. Fort Collins, CO: US Department of Agriculture, Forest Service. Rocky Mountain Research Station. p. 81-102.2014 2014, Volume 71, p. 81-102, https://www.fs.usda.gov/treesearch/pubs/46580.
  524. Westerling, A. L., 2016, Increasing Western US forest wildfire activity: Sensitivity to changes in the timing of spring: Philosophical Transactions of the Royal Society B, v. 371, no. 1696, p. 10, https://doi.org/10.1098/rstb.2015.0178.
  525. Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R., and Dettinger, M. D., 2003, Climate and wildfire in the western United States: Bulletin of the American Meteorological Society, v. 84, no. 5, p. 595-604, https://doi.org/10.1175/BAMS-84-5-595.
  526. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W., 2006, Warming and earlier spring increase Western U.S. forest wildfire activity: Science, v. 313, no. 5789, p. 940-943, https://doi.org/10.1126/science.1128834.
  527. Wilcox, B. P., 2010, Transformative ecosystem change and ecohydrology: ushering in a new era for watershed management: Ecohydrology, v. 3, no. 1, p. 126-130, https://doi.org/10.1002/eco.104.
  528. Wilcox, B. P., Breshears, D. D., and Allen, C. D., 2003, Ecohydrology of a resource-conserving semiarid woodland: Effects of scale and disturbance: Ecological Monographs, v. 73, no. 2, p. 223-239, https://doi.org/10.1890/0012-9615(2003)073[0223:EOARSW]2.0.CO;2.
  529. Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., et al., 2013, Temperature as a potent driver of regional forest drought stress and tree mortality: Nature Climate Change, v. 3, no. 3, p. 292-297, https://doi.org/10.1038/nclimate1693.
  530. Williams, A. P., Allen, C. D., Millar, C. I., Swetnam, T. W., Michaelsen, J., Still, C. J., and Leavitt, S. W., 2010, Forest responses to increasing aridity and warmth in the Southwestern United States: Proceedings of the National Academy of Sciences, v. 107, no. 50, p. 21289-21294, https://doi.org/10.1073/pnas.0914211107.
  531. Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M., and Livneh, B., 2020, Erratum for the Report “Large contribution from anthropogenic warming to an emerging North American megadrought” by A. Park Williams, E. R. Cook, J. E. Smerdon, B. I. Cook, J. T. Abatzoglou, K. Bolles, S. H. Baek, A. M. Badger, B. Livneh: Science, v. 370, no. 6516, p. 3676, https://doi.org/10.1126/science.abf3676.
  532. Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M., and Livneh, B., 2020, Large contribution from anthropogenic warming to an emerging North American megadrought: Science, v. 368, no. 6488, p. 314-318, https://doi.org/10.1126/science.aaz9600.
  533. Wine, M., and Cadol, D., 2016, Hydrologic effects of large Southwestern USA wildfires significantly increase regional water supply: Fact or fiction?: Environmental Research Letters, v. 11, no. 8, p. 14, https://doi.org/10.1088/1748-9326/11/8/085006.
  534. Winkler, D. E., Belnap, J., Hoover, D., Reed, S. C., and Duniway, M. C., 2019, Shrub persistence and increased grass mortality in response to drought in dryland systems: Global Change Biology, v. 25, no. 9, p. 3121-3135, https://doi.org/10.1111/gcb.14667.
  535. WMO, 2009, Manual on estimation of probable maximum precipitation (PMP): World Meteorological Organization No. 1045, https://library.wmo.int/index.php?lvl=notice_display&id=1302.
  536. Wohl, E. E., and Pearthree, P. P., 1991, Debris flows as geomorphic agents in the Huachuca Mountains of Southeastern Arizona: Geomorphology, v. 4, no. 3-4, p. 273-292, https://doi.org/10.1016/0169-555X(91)90010-8.
  537. Wondzell, S. M., Diabat, M., and Haggerty, R., 2019, What matters most: Are future stream temperatures more sensitive to changing air temperatures, discharge, or riparian vegetation?: Journal of the American Water Resources Association, v. 55, no. 1, p. 116-132, https://doi.org/10.1111/1752-1688.12707.
  538. Wood, K. M., and Ritchie, E. A., 2013, An updated climatology of tropical cyclone impacts on the Southwestern United States: Monthly Weather Review, v. 141, no. 12, p. 4322-4336, https://doi.org/10.1175/mwr-d-13-00078.1.
  539. Woodhouse, C. A., Malevich, S. B., Meko, D. M., and Gangopadhyay, S., 2013, Klamath River Reconstruction: Strategies for Dealing with Uncertainty in Calibration Data, Volume 2013, p. GC11A-0957, https://ui.adsabs.harvard.edu/abs/2013AGUFMGC11A0957W.
  540. Woodhouse, C. A., Meko, D. M., Griffin, D., and Castro, C. L., 2013, Tree rings and multiseason drought variability in the lower Rio Grande Basin, USA: Water Resources Research, v. 49, no. 2, p. 844-850, https://doi.org/10.1002/wrcr.20098.
  541. Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W., Cook, E. R., and Turner, B. L., 2010, A 1,200-year perspective of 21st century drought in Southwestern North America: Proceedings of the National Academy of Sciences of the United States of America, v. 107, no. 50, p. 21283-21288, https://doi.org/10.1073/pnas.0911197107.
  542. Wylander, S., 2021, Increased Santa Fe River flow delayed to next week, Santa Fe New Mexican, https://www.santafenewmexican.com/news/local_news/increased-santa-fe-river-flow-delayed-to-next-week/article_e32607d2-5b3d-11eb-8ca6-cfadfe352c27.html.
  543. Xiao, M., Udall, B., and Lettenmaier, D. P., 2018, On the causes of declining Colorado River streamflows: Water Resources Research, v. 54, p. 18, https://doi.org/10.1029/2018WR023153.
  544. Xu, F., 2018, Estimation of focused recharge for New Mexico using a soil-water-balance model: PyRANA, M.S. thesis: New Mexico Institute of Mining & Technology, 75 p.
  545. Yang, Y., Zhang, S., McVicar Tim, R., Beck Hylke, E., Zhang, Y., and Liu, B., 2018, Disconnection between trends of atmospheric drying and continental runoff: Water Resources Research, v. 54, p. 4700-4713, https://doi.org/10.1029/2018WR022593.
  546. Yanoff, S., and Muldavin, E., 2008, Grassland-shrubland transformation and grazing: A century-scale view of a Northern Chihuahuan Desert grassland: Journal of Arid Environments, v. 72, no. 9, p. 1594-1605, https://doi.org/10.1016/j.jaridenv.2008.03.012.
  547. Zavala, M. A., 2021, Excess plant growth worsens droughts: Nature Ecology & Evolution, v. 5, no. 11, p. 1474-1475, https://doi.org/10.1038/s41559-021-01556-3.
  548. Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R., 2012, COSMOS: the COsmic-ray Soil Moisture Observing System: Hydrological Earth and System Sciences, v. 16, no. 11, p. 4079-4099, https://doi.org/10.5194/hess-16-4079-2012.